

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pip-accel 0.8.15 documentation

Documentation for the pip accelerator

The pip accelerator makes pip [http://www.pip-installer.org/] (the Python
package manager) faster by keeping pip off the internet when possible and by
caching compiled binary distributions. It can bring a 10 minute run of pip
down to less than a minute. You can find the pip accelerator in the following
places:

	The source code lives on GitHub [https://github.com/paylogic/pip-accel]

	Downloads are available in the Python Package Index [https://pypi.python.org/pypi/pip-accel]

	Online documentation is hosted by Read The Docs [https://pip-accel.readthedocs.org/]

This is the documentation for version 0.8.15 of the pip accelerator. The
documentation consists of two parts:

	The documentation for users of the pip-accel command

	The documentation for developers who wish to extend and/or embed the
functionality of pip-accel

Introduction & usage

The first part of the documentation is the readme which is targeted at users of
the pip-accel command. Here are the topics discussed in the readme:

	pip-accel: Accelerator for pip, the Python package manager
	Usage

	How fast is it?

	Control flow of pip-accel

	Contact

	License

Internal API documentation

The second part of the documentation is targeted at developers who wish to
extend and/or embed the functionality of pip-accel. Here are the contents
of the API documentation:

	Documentation for the pip accelerator API

 Copyright 2013, Peter Odding and Paylogic International.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.8.15

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pip-accel 0.8.15 documentation

pip-accel: Accelerator for pip, the Python package manager

The pip-accel program is a wrapper for pip [http://www.pip-installer.org/], the Python package manager. It accelerates the usage of pip to initialize Python virtual environments [http://www.virtualenv.org/en/latest/] given one or more requirements [http://www.pip-installer.org/en/latest/cookbook.html#requirements-files] files. It does so by combining the following two approaches:

	Source distribution downloads are cached and used to generate a local index of source distribution archives [http://www.pip-installer.org/en/latest/cookbook.html#fast-local-installs]. If all your dependencies are pinned to absolute versions whose source distribution downloads were previously cached, pip-accel won’t need a network connection at all! This is one of the reasons why pip can be so slow: given absolute pinned dependencies available in the download cache it will still scan PyPI [http://pypi.python.org/] and distribution websites.

	Binary distributions [http://docs.python.org/2/distutils/builtdist.html] are used to speed up the process of installing dependencies with binary components (like M2Crypto [https://pypi.python.org/pypi/M2Crypto] and LXML [https://pypi.python.org/pypi/lxml]). Instead of recompiling these dependencies again for every virtual environment we compile them once and cache the result as a binary *.tar.gz distribution.

Usage

The pip-accel command supports all subcommands and options supported by pip, however it is of course only useful for the pip install subcommand. So for example:

pip-accel install -r requirements.txt

If you pass a -v option then pip and pip-accel will both use verbose output. To enable verbose output from pip-accel only, you can set the environment variable PIP_ACCEL_VERBOSE.

Based on the user running pip-accel the following file locations are used by default:

	Root user
	All other users
	Purpose

	/root/.pip/download-cache
	~/.pip/download-cache
	Assumed to be pip’s download cache

	/var/cache/pip-accel
	~/.pip-accel
	Used to store the source/binary indexes

These defaults can be overridden by defining the environment variables PIP_DOWNLOAD_CACHE and/or PIP_ACCEL_CACHE.

How fast is it?

To give you an idea of how effective pip-accel is, below are the results of a test to build a virtual environment for one of the internal codebases of Paylogic [http://www.paylogic.com/]. This code base requires more than 40 dependencies including several packages that need compilation with SWIG and a C compiler:

	Program
	Description
	Duration
	Percentage

	pip
	Default configuration
	444 seconds
	100% (baseline)

	pip
	With download cache (first run)
	416 seconds
	94%

	pip
	With download cache (second run)
	318 seconds
	72%

	pip-accel
	First run
	397 seconds
	89%

	pip-accel
	Second run
	30 seconds
	7%

Control flow of pip-accel

The way pip-accel works is not very intuitive but it is very effective. Below is an overview of the control flow. Once you take a look at the code you’ll notice that the steps below are all embedded in a loop that retries several times. This is mostly because of step 2 (downloading the source distributions).

	Run pip install --no-index --no-install -r requirements.txt to unpack source distributions available in the local source index. This is the first step because pip-accel should accept requirements.txt files as input but it will manually install dependencies from cached binary distributions (without using pip or easy_install):

	If the command succeeds it means all dependencies are already available as downloaded source distributions. We’ll parse the verbose pip output of step 1 to find the direct and transitive dependencies (names and versions) defined in requirements.txt and use them as input for step 3. Go to step 3.

	If the command fails it probably means not all dependencies are available as local source distributions yet so we should download them. Go to step 2.

	Run pip install --no-install -r requirements.txt to download missing source distributions to the download cache:

	If the command fails it means that pip encountered errors while scanning PyPI [http://pypi.python.org/], scanning a distribution website, downloading a source distribution or unpacking a source distribution. Usually these kinds of errors are intermittent so retrying a few times is worth a shot. Go to step 2.

	If the command succeeds it means all dependencies are now available as local source distributions; we don’t need the network anymore! Go to step 1.

	Run python setup.py bdist_dumb --format=gztar for each dependency that doesn’t have a cached binary distribution yet (taking version numbers into account). Go to step 4.

	Install all dependencies from binary distributions based on the list of direct and transitive dependencies obtained in step 1. We have to do these installations manually because easy_install nor pip support binary *.tar.gz distributions.

Contact

If you have questions, bug reports, suggestions, etc. please create an issue on the GitHub project page [https://github.com/paylogic/pip-accel]. The latest version of pip-accel will always be available on GitHub. The internal API documentation is hosted on Read The Docs [https://pip-accel.readthedocs.org/].

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License] just like pip [http://www.pip-installer.org/] (on which pip-accel is based).

© 2013 Peter Odding and Paylogic International.

 Copyright 2013, Peter Odding and Paylogic International.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.8.15

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pip-accel 0.8.15 documentation

Documentation for the pip accelerator API

The Python module pip_accel defines the classes and functions that
implement the functionality of the pip accelerator and the pip-accel
command. Instead of using the pip-accel command you can also use the pip
accelerator as a Python module. In this case you’ll probably want to start by
taking a look at the following functions:

	unpack_source_dists()

	download_source_dists()

	build_binary_dists()

	install_requirements()

	
class pip_accel.CustomInstallCommand(*args, **kw)

	Required to call pip as a Python module instead of a subprocess.

The pip.commands.install.InstallCommand.run() method returns a
RequirementSet object which pip-accel is interested in, however
pip.basecommand.Command.main() swallows the requirement set (based on
my reading of the pip 1.3.x source code).

To work around the problem described above, we subclass InstallCommand
to wrap the run() method. Yes this is a bit sneaky, but I don’t fancy
reimplementing pip.basecommand.Command.main() inside pip-accel!

	
class pip_accel.Timer

	Easy to use timer to keep track of long during operations.

	
elapsed_time

	Get the number of seconds elapsed since the timer object was created.

	
pip_accel.add_extension(download_path, archive_path)

	Make sure all cached source distributions have the right file extension,
because not all distribution sites provide URLs with proper filenames in
them while we really need the proper filenames to build the local source
index.

	Parameters:	
	download_path – The pathname of the source distribution archive in
the download cache.

	archive_path – The pathname of the distribution archive in the source
index directory.

	Returns:	The (possibly modified) pathname of the distribution archive in
the source index directory.

Previously this used the file executable, now it checks the magic file
headers itself. I could have used any of the numerous libmagic bindings
on PyPI, but that would add a binary dependency to pip-accel and I
don’t want that :-).

	
pip_accel.build_binary_dists(requirements)

	Convert source distributions to binary distributions.

	Parameters:	requirements – A list of tuples in the format of the return value of
the unpack_source_dists() function.

	Returns:	True if it succeeds in building a binary distribution,
False otherwise (probably because of missing binary
dependencies like system libraries).

	
pip_accel.cache_binary_distribution(input_path, output_path)

	Transform a binary distribution archive created with python setup.py
bdist_dumb --format=gztar into a form that can be cached for future use.
This comes down to making the pathnames inside the archive relative to the
prefix that the binary distribution was built for.

	Parameters:	
	input_path – The pathname of the original binary distribution archive

	output_path – The pathname of the binary distribution in the cache
directory.

	
pip_accel.download_source_dists(arguments)

	Download missing source distributions.

	Parameters:	arguments – A list with the arguments intended for pip.

	
pip_accel.ensure_parsed_requirement(install_requirement)

	InstallRequirement objects in RequirementSet objects have a req
member, which apparently can be either a string or a
pkg_resources.Requirement object. This function makes sure we’re
dealing with a pkg_resources.Requirement object.

This was “copied” from the pip source code, I’m not sure if this code is
actually necessary but it doesn’t hurt and pip probably did it for a
reason. Right? :-)

	Parameters:	install_requirement – An InstallRequirement object
produced by pip.

	Returns:	A pkg_resources.Requirement object.

	
pip_accel.expanduser(pathname)

	Variant of os.path.expanduser() [http://docs.python.org/library/os.path.html#os.path.expanduser] that doesn’t use $HOME but
instead uses the home directory of the effective user id. This is basically
a workaround for sudo -s not resetting $HOME.

	Parameters:	pathname – A pathname that may start with ~/, indicating the path
should be interpreted as being relative to the home
directory of the current (effective) user.

	
pip_accel.find_binary_dists()

	Find all previously cached binary distributions.

	Returns:	A dictionary with (package-name, package-version, python-version)
tuples as keys and pathnames of binary archives as values.

	
pip_accel.fix_hashbang(python, contents)

	Rewrite the hashbang in an executable script so that the Python program
inside the virtual environment is used instead of a system wide Python.

	Parameters:	
	python – The absolute pathname of the Python program inside the
virtual environment.

	contents – A string with the contents of the script whose hashbang
should be fixed.

	Returns:	The modified contents of the script as a string.

	
pip_accel.get_python_version()

	Return a string identifying the currently running Python version.

	Returns:	A string like “py2.6” or “py2.7” containing a short mnemonic
prefix followed by the major and minor version numbers.

	
pip_accel.initialize_directories()

	Create the directories for the download cache, the source index and the
binary index if any of them don’t exist yet and reset the binary index
when its format changes.

	
pip_accel.install_binary_dist(filename, install_prefix='/home/docs')

	Install a binary distribution created with python setup.py bdist into
the given prefix (a directory like /usr, /usr/local or a virtual
environment).

	Parameters:	
	filename – The pathname of the tar archive.

	install_prefix – The “prefix” under which the requirements should be
installed. This will be a pathname like /usr,
/usr/local or the pathname of a virtual
environment.

	
pip_accel.install_requirements(requirements, install_prefix='/home/docs')

	Manually install all requirements from binary distributions.

	Parameters:	
	requirements – A list of tuples in the format of the return value of
unpack_source_dists().

	install_prefix – The “prefix” under which the requirements should be
installed. This will be a pathname like /usr,
/usr/local or the pathname of a virtual
environment.

	Returns:	True if it succeeds in installing all requirements from
binary distribution archives, False otherwise.

	
pip_accel.main()

	Main logic of the pip-accel command.

	
pip_accel.print_usage()

	Report the usage of the pip-accel command to the console.

	
pip_accel.run_pip(arguments, use_remote_index)

	Execute a modified pip install command. This function assumes that the
arguments concern a pip install command (main() makes sure
of this).

	Parameters:	
	arguments – A list of strings containing the arguments that will be
passed to pip.

	use_remote_index – A boolean indicating whether pip is allowed to
contact http://pypi.python.org.

	Returns:	A RequirementSet object created by pip, unless an
exception is raised by pip (in which case the exception will
bubble up).

	
pip_accel.sorted_requirements(requirement_set)

	Sort the requirements in a RequirementSet.

	Parameters:	requirement_set – A RequirementSet object produced by pip.

	Returns:	A list of sorted InstallRequirement objects.

	
pip_accel.unpack_source_dists(arguments)

	Check whether there are local source distributions available for all
requirements, unpack the source distribution archives and find the names
and versions of the requirements. By using the pip install --no-install
command we avoid reimplementing the following pip features:

	Parsing of requirements.txt (including recursive parsing)

	Resolution of possibly conflicting pinned requirements

	Unpacking source distributions in multiple formats

	Finding the name & version of a given source distribution

	Parameters:	arguments – A list of strings with the command line arguments to be
passed to the pip command.

	Returns:	A list of tuples with three strings each: The name of a
requirement (package), its version number and the directory where
the unpacked source distribution is located. If pip fails, an
exception will be raised by pip.

	
pip_accel.update_source_dists_index()

	Link newly downloaded source distributions into the local index directory
using symbolic links.

 Copyright 2013, Peter Odding and Paylogic International.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.8.15

 Navigation

 	
 index

 	
 modules |

 	pip-accel 0.8.15 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 pip_accel	

 Copyright 2013, Peter Odding and Paylogic International.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.8.15

 Navigation

 	
 index

 	
 modules |

 	pip-accel 0.8.15 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | T
 | U

A

 	

 	add_extension() (in module pip_accel)

B

 	

 	build_binary_dists() (in module pip_accel)

C

 	

 	cache_binary_distribution() (in module pip_accel)

 	

 	CustomInstallCommand (class in pip_accel)

D

 	

 	download_source_dists() (in module pip_accel)

E

 	

 	elapsed_time (pip_accel.Timer attribute)

 	ensure_parsed_requirement() (in module pip_accel)

 	

 	expanduser() (in module pip_accel)

F

 	

 	find_binary_dists() (in module pip_accel)

 	

 	fix_hashbang() (in module pip_accel)

G

 	

 	get_python_version() (in module pip_accel)

I

 	

 	initialize_directories() (in module pip_accel)

 	install_binary_dist() (in module pip_accel)

 	

 	install_requirements() (in module pip_accel)

M

 	

 	main() (in module pip_accel)

P

 	

 	pip_accel (module)

 	

 	print_usage() (in module pip_accel)

R

 	

 	run_pip() (in module pip_accel)

S

 	

 	sorted_requirements() (in module pip_accel)

T

 	

 	Timer (class in pip_accel)

U

 	

 	unpack_source_dists() (in module pip_accel)

 	

 	update_source_dists_index() (in module pip_accel)

 Copyright 2013, Peter Odding and Paylogic International.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.8.15

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pip-accel 0.8.15 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Peter Odding and Paylogic International.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.8.15

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

