
pip-accel
Release 0.43

June 06, 2016

Contents

1 Introduction & usage 3
1.1 pip-accel: Accelerator for pip, the Python package manager . 3

2 Internal API documentation 9
2.1 Documentation for the pip accelerator API . 9

Python Module Index 43

i

ii

pip-accel, Release 0.43

The pip accelerator makes pip (the Python package manager) faster by keeping pip off the internet when possible and
by caching compiled binary distributions. It can bring a 10 minute run of pip down to less than a minute. You can
find the pip accelerator in the following places:

• The source code lives on GitHub

• Downloads are available in the Python Package Index

• Online documentation is hosted by Read The Docs

This is the documentation for version 0.43 of the pip accelerator. The documentation consists of two parts:

• The documentation for users of the pip-accel command

• The documentation for developers who wish to extend and/or embed the functionality of pip-accel

Contents 1

http://www.pip-installer.org/
https://github.com/paylogic/pip-accel
https://pypi.python.org/pypi/pip-accel
https://pip-accel.readthedocs.org/

pip-accel, Release 0.43

2 Contents

CHAPTER 1

Introduction & usage

The first part of the documentation is the readme which is targeted at users of the pip-accel command. Here are
the topics discussed in the readme:

1.1 pip-accel: Accelerator for pip, the Python package manager

The pip-accel program is a wrapper for pip, the Python package manager. It accelerates the usage of pip to initial-
ize Python virtual environments given one or more requirements files. It does so by combining the following two
approaches:

1. Source distribution downloads are cached and used to generate a local index of source distribution archives.
If all your dependencies are pinned to absolute versions whose source distribution downloads were previously
cached, pip-accel won’t need a network connection at all! This is one of the reasons why pip can be so slow:
given absolute pinned dependencies available in the download cache it will still scan PyPI and distribution
websites.

2. Binary distributions are used to speed up the process of installing dependencies with binary components (like
M2Crypto and LXML). Instead of recompiling these dependencies again for every virtual environment we
compile them once and cache the result as a binary *.tar.gz distribution.

In addition, since version 0.9 pip-accel contains a simple mechanism that detects missing system packages when a
build fails and prompts the user whether to install the missing dependencies and retry the build.

The pip-accel program is currently tested on cPython 2.6, 2.7, 3.4 and 3.5 and PyPy (2.7). The automated test suite
regularly runs on Ubuntu Linux (Travis CI) as well as Microsoft Windows (AppVeyor). In addition to these platforms
pip-accel should work fine on most UNIX systems (e.g. Mac OS X).

3

http://www.pip-installer.org/
http://www.virtualenv.org/
http://www.pip-installer.org/en/latest/cookbook.html#requirements-files
http://www.pip-installer.org/en/latest/cookbook.html#fast-local-installs
http://pypi.python.org/
http://docs.python.org/2/distutils/builtdist.html
https://pypi.python.org/pypi/M2Crypto
https://pypi.python.org/pypi/lxml
https://travis-ci.org/paylogic/pip-accel
https://ci.appveyor.com/project/xolox/pip-accel

pip-accel, Release 0.43

Contents

• pip-accel: Accelerator for pip, the Python package manager
– Status
– Usage

* Configuration
– How fast is it?
– Alternative cache backends

* Storing the binary cache on Amazon S3
· Using S3 compatible storage services

– Caching of setup requirements
– Dependencies on system packages
– Integrating with tox
– Control flow of pip-accel
– Contact
– License

1.1.1 Status

Paylogic uses pip-accel to quickly and reliably initialize virtual environments on its farm of continuous integration
slaves which are constantly running unit tests (this was one of the original use cases for which pip-accel was devel-
oped). We also use it on our build servers.

When pip-accel was originally developed PyPI was sometimes very unreliable (PyPI wasn’t behind a CDN back then).
Because of the CDN, PyPI is much more reliable nowadays however pip-accel still has its place:

• The CDN doesn’t help for distribution sites, which are as unreliably as they have always been.

• By using pip-accel you can make Python deployments completely independent from internet connectivity.

• Because pip-accel caches compiled binary packages it can still provide a nice speed boost over using plain pip.

1.1.2 Usage

The pip-accel command supports all subcommands and options supported by pip, however it is of course only useful
for the pip install subcommand. So for example:

$ pip-accel install -r requirements.txt

Alternatively you can also run pip-accel as follows, but note that this requires Python 2.7 or higher (it specifically
doesn’t work on Python 2.6):

$ python -m pip_accel install -r requirements.txt

If you pass a -v or --verbose option then pip and pip-accel will both use verbose output. The -q or --quiet
option is also supported.

Based on the user running pip-accel the following file locations are used by default:

Root user All other users Purpose
/var/cache/pip-accel ~/.pip-accel Used to store the source/binary indexes

This default can be overridden by defining the environment variable PIP_ACCEL_CACHE.

4 Chapter 1. Introduction & usage

http://www.paylogic.com/
http://pypi.python.org/
http://mail.python.org/pipermail/distutils-sig/2013-May/020848.html

pip-accel, Release 0.43

Configuration

For most users the default configuration of pip-accel should be fine. If you do want to change pip-accel’s defaults
you do so by setting environment variables and/or adding configuration options to a configuration file. This is because
pip-accel shares its command line interface with pip and adding support for command line options specific to pip-accel
is non trivial and may end up causing more confusion than it’s worth :-). For an overview of the available configuration
options and corresponding environment variables please refer to the documentation of the pip_accel.config module.

1.1.3 How fast is it?

To give you an idea of how effective pip-accel is, below are the results of a test to build a virtual environment for one
of the internal code bases of Paylogic. This code base requires more than 40 dependencies including several packages
that need compilation with SWIG and a C compiler:

Program Description Duration Percentage
pip Default configuration 444 seconds 100% (baseline)
pip With download cache (first run) 416 seconds 94%
pip With download cache (second run) 318 seconds 72%
pip-accel First run 397 seconds 89%
pip-accel Second run 30 seconds 7%

1.1.4 Alternative cache backends

Bundled with pip-accel are a local cache backend (which stores distribution archives on the local file system) and an
Amazon S3 backend (see below).

Both of these cache backends are registered with pip-accel using a generic pluggable cache backend registration
mechanism. This mechanism makes it possible to register additional cache backends without modifying pip-accel. If
you are interested in the details please refer to pip-accel’s setup.py script and the two simple Python modules that
define the bundled backends.

If you’ve written a cache backend that you think may be valuable to others, please feel free to open an issue or pull
request on GitHub in order to get your backend bundled with pip-accel.

Storing the binary cache on Amazon S3

You can configure pip-accel to store its binary cache files in an Amazon S3 bucket. In this case Amazon S3 is treated
as a second level cache, only used if the local file system cache can’t satisfy a dependency. If the dependency is not
found in the Amazon S3 bucket, the package is built and cached locally (as usual) but then also saved to the Amazon
S3 bucket. This functionality can be useful for continuous integration build worker boxes that are ephemeral and don’t
have persistent local storage to store the pip-accel binary cache.

To get started you need to install pip-accel as follows:

$ pip install 'pip-accel[s3]'

The [s3] part enables the Amazon S3 cache backend by installing the Boto package. Once installed you can use the
following environment variables to configure the Amazon S3 cache backend:

$PIP_ACCEL_S3_BUCKET The name of the Amazon S3 bucket in which binary distribution archives should be
cached. This environment variable is required to enable the Amazon S3 cache backend.

$PIP_ACCEL_S3_PREFIX The optional prefix to apply to all Amazon S3 keys. This enables name spacing based
on the environment in which pip-accel is running (to isolate the binary caches of ABI incompatible systems).
The user is currently responsible for choosing a suitable prefix.

1.1. pip-accel: Accelerator for pip, the Python package manager 5

http://pip-accel.readthedocs.org/en/latest/developers.html#module-pip_accel.config
http://www.paylogic.com/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
https://github.com/boto/boto

pip-accel, Release 0.43

$PIP_ACCEL_S3_READONLY If this option is set pip-accel will skip uploading to the Amazon S3 bucket. This
means pip-accel will use the configured Amazon S3 bucket to “warm up” your local cache but it will never
write to the bucket, so you can use read only credentials. Of course you will need to run at least one instance of
pip-accel that does have write permissions, so this setup is best suited to teams working around e.g. a continuous
integration (CI) server, where the CI server primes the cache and developers use the cache in read only mode.

You can also set these options from a configuration file, please refer to the documentation of the pip_accel.config
module. You will also need to set AWS credentials, either in a .boto file or in the $AWS_ACCESS_KEY_ID and
$AWS_SECRET_ACCESS_KEY environment variables (refer to the Boto documentation for details).

Using S3 compatible storage services

If you want to point pip-accel at an S3 compatible storage service that is not Amazon S3 you can override the S3
API URL using a configuration option or environment variable. For example the pip-accel test suite first installs and
starts FakeS3 and then sets PIP_ACCEL_S3_URL=http://localhost:12345 to point pip-accel at the FakeS3
server (in order to test the Amazon S3 cache backend without actually having to pay for an Amazon S3 bucket :-). For
more details please refer to the documentation of the Amazon S3 cache backend.

1.1.5 Caching of setup requirements

Since version 0.38 pip-accel instructs setuptools to cache setup requirements in a subdirectory of pip-accel’s data
directory (see the eggs_cache option) to avoid recompilation of setup requirements. This works by injecting a symbolic
link called .eggs into unpacked source distribution directories before pip or pip-accel runs the setup script.

The use of the .eggs directory was added in setuptools version 7.0 which is why pip-accel now requires setuptools
7.0 or higher to be installed. This dependency was added because the whole point of pip-accel is to work well out of
the box, shielding the user from surprising behavior like setup requirements slowing things down and breaking offline
installation.

1.1.6 Dependencies on system packages

Since version 0.9 pip-accel contains a simple mechanism that detects missing system packages when a build fails
and prompts the user whether to install the missing dependencies and retry the build. Currently only Debian Linux
and derivative Linux distributions are supported, although support for other platforms should be easy to add. This
functionality currently works based on configuration files that define dependencies of Python packages on system
packages. This means the results should be fairly reliable, but every single dependency needs to be manually defined...

Here’s what it looks like in practice:

2013-06-16 01:01:53 wheezy-vm INFO Building binary distribution of python-mcrypt (1.1) ..
2013-06-16 01:01:53 wheezy-vm ERROR Failed to build binary distribution of python-mcrypt! (version: 1.1)
2013-06-16 01:01:53 wheezy-vm INFO Build output (will probably provide a hint as to what went wrong):

gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fPIC -DVERSION="1.1" -I/usr/include/python2.7 -c mcrypt.c -o build/temp.linux-i686-2.7/mcrypt.o
mcrypt.c:23:20: fatal error: mcrypt.h: No such file or directory
error: command 'gcc' failed with exit status 1

2013-06-16 01:01:53 wheezy-vm INFO python-mcrypt: Checking for missing dependencies ..
2013-06-16 01:01:53 wheezy-vm INFO You seem to be missing 1 dependency: libmcrypt-dev
2013-06-16 01:01:53 wheezy-vm INFO I can install it for you with this command: sudo apt-get install --yes libmcrypt-dev
Do you want me to install this dependency? [y/N] y
2013-06-16 01:02:05 wheezy-vm INFO Got permission to install missing dependency.

The following extra packages will be installed:

6 Chapter 1. Introduction & usage

http://pip-accel.readthedocs.org/en/latest/developers.html#module-pip_accel.config
http://pip-accel.readthedocs.org/en/latest/developers.html#module-pip_accel.config
http://boto.readthedocs.org/en/latest/boto_config_tut.html
http://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
http://pip-accel.readthedocs.org/en/latest/developers.html#pip_accel.config.Config.s3_cache_url
http://pip-accel.readthedocs.org/en/latest/developers.html#pip_accel.config.Config.s3_cache_url
https://github.com/jubos/fake-s3
http://pip-accel.readthedocs.org/en/latest/developers.html#module-pip_accel.caches.s3
http://pip-accel.readthedocs.org/en/latest/developers.html#pip_accel.config.Config.binary_cache

pip-accel, Release 0.43

libmcrypt4
Suggested packages:

mcrypt
The following NEW packages will be installed:

libmcrypt-dev libmcrypt4
0 upgraded, 2 newly installed, 0 to remove and 68 not upgraded.
Unpacking libmcrypt4 (from .../libmcrypt4_2.5.8-3.1_i386.deb) ...
Unpacking libmcrypt-dev (from .../libmcrypt-dev_2.5.8-3.1_i386.deb) ...
Setting up libmcrypt4 (2.5.8-3.1) ...
Setting up libmcrypt-dev (2.5.8-3.1) ...

2013-06-16 01:02:13 wheezy-vm INFO Successfully installed 1 missing dependency.
2013-06-16 01:02:13 wheezy-vm INFO Building binary distribution of python-mcrypt (1.1) ..
2013-06-16 01:02:14 wheezy-vm INFO Copying binary distribution python-mcrypt-1.1.linux-i686.tar.gz to cache as python-mcrypt:1.1:py2.7.tar.gz.

1.1.7 Integrating with tox

You can tell Tox to use pip-accel using a small shell script that first uses pip to install pip-accel, then uses pip-accel to
bootstrap the virtual environment. You can find details about this in issue #30 on GitHub.

1.1.8 Control flow of pip-accel

The way pip-accel works is not very intuitive but it is very effective. Below is an overview of the control flow. Once
you take a look at the code you’ll notice that the steps below are all embedded in a loop that retries several times. This
is mostly because of step 2 (downloading the source distributions).

1. Run pip install --download=... --no-index -r requirements.txt to unpack source
distributions available in the local source index. This is the first step because pip-accel should accept require-
ments.txt files as input but it will manually install dependencies from cached binary distributions (without using
pip or easy_install):

• If the command succeeds it means all dependencies are already available as downloaded source distributions.
We’ll parse the verbose pip output of step 1 to find the direct and transitive dependencies (names and versions)
defined in requirements.txt and use them as input for step 3. Go to step 3.

• If the command fails it probably means not all dependencies are available as local source distributions yet so we
should download them. Go to step 2.

2. Run pip install --download=... -r requirements.txt to download missing source distri-
butions to the download cache:

• If the command fails it means that pip encountered errors while scanning PyPI, scanning a distribution web-
site, downloading a source distribution or unpacking a source distribution. Usually these kinds of errors are
intermittent so retrying a few times is worth a shot. Go to step 2.

• If the command succeeds it means all dependencies are now available as local source distributions; we don’t
need the network anymore! Go to step 1.

3. Run python setup.py bdist_dumb --format=gztar for each dependency that doesn’t have a
cached binary distribution yet (taking version numbers into account). Go to step 4.

4. Install all dependencies from binary distributions based on the list of direct and transitive dependencies obtained
in step 1. We have to do these installations manually because easy_install nor pip support binary *.tar.gz
distributions.

1.1. pip-accel: Accelerator for pip, the Python package manager 7

https://tox.readthedocs.org/
https://github.com/paylogic/pip-accel/issues/30
http://pypi.python.org/

pip-accel, Release 0.43

1.1.9 Contact

If you have questions, bug reports, suggestions, etc. please create an issue on the GitHub project page. The latest
version of pip-accel will always be available on GitHub. The internal API documentation is hosted on Read The Docs.

1.1.10 License

This software is licensed under the MIT license just like pip (on which pip-accel is based).

© 2016 Peter Odding and Paylogic International.

8 Chapter 1. Introduction & usage

https://github.com/paylogic/pip-accel
https://pip-accel.readthedocs.org/
http://en.wikipedia.org/wiki/MIT_License
http://www.pip-installer.org/
http://www.paylogic.com/

CHAPTER 2

Internal API documentation

The second part of the documentation is targeted at developers who wish to extend and/or embed the functionality of
pip-accel. Here are the contents of the API documentation:

2.1 Documentation for the pip accelerator API

On this page you can find the complete API documentation of pip-accel 0.43.

2.1.1 A note about backwards compatibility

Please note that pip-accel has not yet reached a 1.0 version and until that time arbitrary changes to the API can be
made. To clarify that statement:

• On the one hand I value API stability and I’ve built a dozen tools on top of pip-accel myself so I don’t think too
lightly about breaking backwards compatibility :-)

• On the other hand if I see opportunities to simplify the code base or make things more robust I will go ahead
and do it. Furthermore the implementation of pip-accel is dictated (to a certain extent) by pip and this certainly
influences the API. For example API changes may be necessary to facilitate the upgrade to pip 1.5.x (the current
version of pip-accel is based on pip 1.4.x).

In pip-accel 0.16 a completely new API was introduced and support for the old “API” was dropped. The goal of the
new API is to last for quite a while but of course only time will tell if that plan is going to work out :-)

2.1.2 The Python API of pip-accel

Here are the relevant Python modules that make up pip-accel:

9

pip-accel, Release 0.43

• pip_accel
– Wheel support

* Setuptools upgrade
• pip_accel.config

– Support for runtime configuration
– Support for configuration files

• pip_accel.req
• pip_accel.bdist
• pip_accel.caches
• pip_accel.caches.local
• pip_accel.caches.s3

– Using S3 compatible storage services
– A note about robustness

• pip_accel.deps
• pip_accel.utils
• pip_accel.exceptions

– Hierarchy of exceptions
• pip_accel.tests

pip_accel

Top level functionality of pip-accel.

The Python module pip_accel defines the classes that implement the top level functionality of the pip accelerator.
Instead of using the pip-accel command you can also use the pip accelerator as a Python module, in this case
you’ll probably want to start by taking a look at the PipAccelerator class.

Wheel support

During the upgrade to pip 6 support for installation of wheels was added to pip-accel. The pip-accel command
line program now downloads and installs wheels when available for a given requirement, but part of pip-accel’s Python
API defaults to the more conservative choice of allowing callers to opt-in to wheel support.

This is because previous versions of pip-accel would only download source distributions and pip-accel provides the
functionality to convert those source distributions to “dumb binary distributions”. This functionality is exposed to
callers who may depend on this mode of operation. So for now users of the Python API get to decide whether they’re
interested in wheels or not.

Setuptools upgrade If the requirement set includes wheels and setuptools >= 0.8 is not yet installed, it will
be added to the requirement set and installed together with the other requirement(s) in order to enable the usage of
distributions installed from wheels (their metadata is different).

class pip_accel.PipAccelerator(config, validate=True)
Accelerator for pip, the Python package manager.

The PipAccelerator class brings together the top level logic of pip-accel. This top level logic was previ-
ously just a collection of functions but that became more unwieldy as the amount of internal state increased.
The PipAccelerator class is intended to make it (relatively) easy to build something on top of pip and
pip-accel.

__init__(config, validate=True)
Initialize the pip accelerator.

Parameters

10 Chapter 2. Internal API documentation

https://pypi.python.org/pypi/wheel

pip-accel, Release 0.43

• config – The pip-accel configuration (a Config object).

• validate – True to run validate_environment(), False otherwise.

validate_environment()
Make sure sys.prefix matches $VIRTUAL_ENV (if defined).

This may seem like a strange requirement to dictate but it avoids hairy issues like documented here.

The most sneaky thing is that pip doesn’t have this problem (de-facto) because virtualenv copies
pip wherever it goes... (pip-accel on the other hand has to be installed by the user).

initialize_directories()
Automatically create local directories required by pip-accel.

clean_source_index()
Cleanup broken symbolic links in the local source distribution index.

The purpose of this method requires some context to understand. Let me preface this by stating that
I realize I’m probably overcomplicating things, but I like to preserve forward / backward compatibility
when possible and I don’t feel like dropping everyone’s locally cached source distribution archives without
a good reason to do so. With that out of the way:

•Versions of pip-accel based on pip 1.4.x maintained a local source distribution index based on
a directory containing symbolic links pointing directly into pip’s download cache. When files
were removed from pip’s download cache, broken symbolic links remained in pip-accel’s local
source distribution index directory. This resulted in very confusing error messages. To avoid this
clean_source_index() cleaned up broken symbolic links whenever pip-accel was about to in-
voke pip.

•More recent versions of pip (6.x) no longer support the same style of download cache that contains
source distribution archives that can be re-used directly by pip-accel. To cope with the changes in pip
6.x new versions of pip-accel tell pip to download source distribution archives directly into the local
source distribution index directory maintained by pip-accel.

•It is very reasonable for users of pip-accel to have multiple versions of pip-accel installed on their
system (imagine a dozen Python virtual environments that won’t all be updated at the same time; this
is the situation I always find myself in :-). These versions of pip-accel will be sharing the same local
source distribution index directory.

•All of this leads up to the local source distribution index directory containing a mixture of symbolic
links and regular files with no obvious way to atomically and gracefully upgrade the local source
distribution index directory while avoiding fights between old and new versions of pip-accel :-).

•I could of course switch to storing the new local source distribution index in a differently named
directory (avoiding potential conflicts between multiple versions of pip-accel) but then I would have
to introduce a new configuration option, otherwise everyone who has configured pip-accel to store its
source index in a non-default location could still be bitten by compatibility issues.

For now I’ve decided to keep using the same directory for the local source distribution index and to keep
cleaning up broken symbolic links. This enables cooperating between old and new versions of pip-accel
and avoids trashing user’s local source distribution indexes. The main disadvantage is that pip-accel is still
required to clean up broken symbolic links...

install_from_arguments(arguments, **kw)
Download, unpack, build and install the specified requirements.

This function is a simple wrapper for get_requirements(), install_requirements() and
cleanup_temporary_directories() that implements the default behavior of the pip accelerator.
If you’re extending or embedding pip-accel you may want to call the underlying methods instead.

2.1. Documentation for the pip accelerator API 11

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/sys.html#sys.prefix
https://github.com/paylogic/pip-accel/issues/5

pip-accel, Release 0.43

If the requirement set includes wheels and setuptools >= 0.8 is not yet installed, it will be added
to the requirement set and installed together with the other requirement(s) in order to enable the usage of
distributions installed from wheels (their metadata is different).

Parameters

• arguments – The command line arguments to pip install .. (a list of strings).

• kw – Any keyword arguments are passed on to install_requirements().

Returns The result of install_requirements().

setuptools_supports_wheels()
Check whether setuptools should be upgraded to >= 0.8 for wheel support.

Returns True when setuptools 0.8 or higher is already installed, False otherwise (it needs to
be upgraded).

get_requirements(arguments, max_retries=None, use_wheels=False)
Use pip to download and unpack the requested source distribution archives.

Parameters

• arguments – The command line arguments to pip install ... (a list of strings).

• max_retries – The maximum number of times that pip will be asked to download
distribution archives (this helps to deal with intermittent failures). If this is None then
max_retries is used.

• use_wheels – Whether pip and pip-accel are allowed to use wheels (False by default
for backwards compatibility with callers that use pip-accel as a Python API).

Warning: Requirements which are already installed are not included in the result. If this breaks your
use case consider using pip’s --ignore-installed option.

decorate_arguments(arguments)
Change pathnames of local files into file:// URLs with #md5=... fragments.

Parameters arguments – The command line arguments to pip install ... (a list of
strings).

Returns A copy of the command line arguments with pathnames of local files rewritten to
file:// URLs.

When pip-accel calls pip to download missing distribution archives and the user specified the pathname
of a local distribution archive on the command line, pip will (by default) not copy the archive into the
download directory if an archive for the same package name and version is already present.

This can lead to the confusing situation where the user specifies a local distribution archive to install, a
different (older) archive for the same package and version is present in the download directory and pip-
accel installs the older archive instead of the newer archive.

To avoid this confusing behavior, the decorate_arguments() method rewrites the command line
arguments given to pip install so that pathnames of local archives are changed into file:// URLs
that include a fragment with the hash of the file’s contents. Here’s an example:

•Local pathname: /tmp/pep8-1.6.3a0.tar.gz

•File URL: file:///tmp/pep8-1.6.3a0.tar.gz#md5=19cbf0b633498ead63fb3c66e5f1caf6

When pip fills the download directory and encounters a previously cached distribution archive it will check
the hash, realize the contents have changed and replace the archive in the download directory.

12 Chapter 2. Internal API documentation

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#None
https://pypi.python.org/pypi/wheel
http://docs.python.org/library/constants.html#False

pip-accel, Release 0.43

unpack_source_dists(arguments, use_wheels=False)
Find and unpack local source distributions and discover their metadata.

Parameters

• arguments – The command line arguments to pip install ... (a list of strings).

• use_wheels – Whether pip and pip-accel are allowed to use wheels (False by default
for backwards compatibility with callers that use pip-accel as a Python API).

Returns A list of pip_accel.req.Requirement objects.

Raises Any exceptions raised by pip, for example pip.exceptions.DistributionNotFound
when not all requirements can be satisfied.

This function checks whether there are local source distributions available for all requirements, unpacks
the source distribution archives and finds the names and versions of the requirements. By using the pip
install --download command we avoid reimplementing the following pip features:

•Parsing of requirements.txt (including recursive parsing).

•Resolution of possibly conflicting pinned requirements.

•Unpacking source distributions in multiple formats.

•Finding the name & version of a given source distribution.

download_source_dists(arguments, use_wheels=False)
Download missing source distributions.

Parameters

• arguments – The command line arguments to pip install ... (a list of strings).

• use_wheels – Whether pip and pip-accel are allowed to use wheels (False by default
for backwards compatibility with callers that use pip-accel as a Python API).

Raises Any exceptions raised by pip.

get_pip_requirement_set(arguments, use_remote_index, use_wheels=False)
Get the unpacked requirement(s) specified by the caller by running pip.

Parameters

• arguments – The command line arguments to pip install ... (a list of strings).

• use_remote_index – A boolean indicating whether pip is allowed to connect to the
main package index (http://pypi.python.org by default).

• use_wheels – Whether pip and pip-accel are allowed to use wheels (False by default
for backwards compatibility with callers that use pip-accel as a Python API).

Returns A pip.req.RequirementSet object created by pip.

Raises Any exceptions raised by pip.

transform_pip_requirement_set(requirement_set)
Transform pip’s requirement set into one that pip-accel can work with.

Parameters requirement_set – The pip.req.RequirementSet object reported by
pip.

Returns A list of pip_accel.req.Requirement objects.

This function converts the pip.req.RequirementSet object reported by pip into a list of
pip_accel.req.Requirement objects.

2.1. Documentation for the pip accelerator API 13

https://pypi.python.org/pypi/wheel
http://docs.python.org/library/constants.html#False
https://pypi.python.org/pypi/wheel
http://docs.python.org/library/constants.html#False
http://pypi.python.org
https://pypi.python.org/pypi/wheel
http://docs.python.org/library/constants.html#False

pip-accel, Release 0.43

install_requirements(requirements, **kw)
Manually install a requirement set from binary and/or wheel distributions.

Parameters

• requirements – A list of pip_accel.req.Requirement objects.

• kw – Any keyword arguments are passed on to install_binary_dist().

Returns The number of packages that were just installed (an integer).

arguments_allow_wheels(arguments)
Check whether the given command line arguments allow the use of wheels.

Parameters arguments – A list of strings with command line arguments.

Returns True if the arguments allow wheels, False if they disallow wheels.

Contrary to what the name of this method implies its implementation actually checks if the user hasn’t
disallowed the use of wheels using the --no-use-wheel option (deprecated in pip 7.x) or the
--no-binary=:all: option (introduced in pip 7.x). This is because wheels are “opt out” in recent
versions of pip. I just didn’t like the method name arguments_dont_disallow_wheels ;-).

create_build_directory()
Create a new build directory for pip to unpack its archives.

clear_build_directory()
Clear the build directory where pip unpacks the source distribution archives.

cleanup_temporary_directories()
Delete the build directories and any temporary directories created by pip.

build_directory
Get the pathname of the current build directory (a string).

class pip_accel.DownloadLogFilter(name=’‘)
Rewrite log messages emitted by pip’s pip.download module.

When pip encounters hash mismatches it logs a message with the severity CRITICAL, however because of
the interaction between pip-accel and pip hash mismatches are to be expected and handled gracefully (refer to
decorate_arguments() for details). The DownloadLogFilter context manager changes the severity
of these log messages to DEBUG in order to avoid confusing users of pip-accel.

__enter__()
Enable the download log filter.

__exit__(exc_type=None, exc_value=None, traceback=None)
Disable the download log filter.

filter(record)
Change the severity of selected log records.

class pip_accel.SetupRequiresPatch(config, created_links=None)
Monkey patch to enable caching of setup requirements.

This context manager monkey patches InstallRequirement.run_egg_info() to enable caching of
setup requirements. It works by creating a symbolic link called .eggs in the source directory of unpacked
Python source distributions which points to a shared directory inside the pip-accel data directory. This can only
work on platforms that support os.symlink()‘() but should fail gracefully elsewhere.

The SetupRequiresPatch context manager doesn’t clean up the symbolic links because doing so would
remove the link when it is still being used. Instead the context manager builds up a list of created links so that
pip-accel can clean these up when it is known that the symbolic links are no longer needed.

14 Chapter 2. Internal API documentation

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False

pip-accel, Release 0.43

For more information about this hack please refer to issue 49.

__init__(config, created_links=None)
Initialize a SetupRequiresPatch object.

Parameters

• config – A Config object.

• created_links – A list where newly created symbolic links are added to (so they can
be cleaned up later).

__enter__()
Enable caching of setup requirements (by patching the run_egg_info() method).

__exit__(exc_type=None, exc_value=None, traceback=None)
Undo the changes that enable caching of setup requirements.

class pip_accel.CustomPackageFinder(find_links, index_urls, allow_external=(), al-
low_unverified=(), allow_all_external=False, al-
low_all_prereleases=False, trusted_hosts=None, pro-
cess_dependency_links=False, session=None, for-
mat_control=None)

Custom pip.index.PackageFinder to keep pip off the internet.

This class customizes pip.index.PackageFinder to enforce what the --no-index option does for the
default package index but doesn’t do for package indexes registered with the --index= option in requirements
files. Judging by pip’s documentation the fact that this has to be monkey patched seems like a bug / oversight in
pip (IMHO).

index_urls
Dummy list of index URLs that is always empty.

dependency_links
Dummy list of dependency links that is always empty.

class pip_accel.PatchedAttribute(object, attribute, value, enabled=True)
Context manager to temporarily patch an object attribute.

This context manager changes the value of an object attribute when the context is entered and restores the
original value when the context is exited.

__init__(object, attribute, value, enabled=True)
Initialize a PatchedAttribute object.

Parameters

• object – The object whose attribute should be patched.

• attribute – The name of the attribute to be patched (a string).

• value – The temporary value for the attribute.

• enabled – True to patch the attribute, False to do nothing instead. This enables
conditional attribute patching while unconditionally using the with statement.

__enter__()
Change the object attribute when entering the context.

__exit__(exc_type=None, exc_value=None, traceback=None)
Restore the object attribute when leaving the context.

class pip_accel.AttributeOverrides(opts, **overrides)
AttributeOverrides enables overriding of object attributes.

2.1. Documentation for the pip accelerator API 15

https://github.com/paylogic/pip-accel/issues/49
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/reference/compound_stmts.html#with

pip-accel, Release 0.43

During the pip 6.x upgrade pip-accel switched to using pip install --download which unintentionally
broke backwards compatibility with previous versions of pip-accel as documented in issue 52.

The reason for this is that when pip is given the --download option it internally enables
--ignore-installed (which can be problematic for certain use cases as described in issue 52). There
is no documented way to avoid this behavior, so instead pip-accel resorts to monkey patching to restore back-
wards compatibility.

AttributeOverrides is used to replace pip’s parsed command line options object with an object that defers
all attribute access (gets and sets) to the original options object but always reports ignore_installed as
False, even after it was set to True by pip (as described above).

__init__(opts, **overrides)
Construct an AttributeOverrides instance.

Parameters

• opts – The object to which attribute access is deferred.

• overrides – The attributes whose value should be overridden.

__getattr__(name)
Get an attribute’s value from overrides or by deferring attribute access.

Parameters name – The name of the attribute (a string).

Returns The attribute’s value.

__setattr__(name, value)
Set an attribute’s value (unless it has an override).

Parameters

• name – The name of the attribute (a string).

• value – The new value for the attribute.

pip_accel.config

Configuration handling for pip-accel.

This module defines the Config class which is used throughout the pip accelerator. At runtime an instance of
Config is created and passed down like this:

16 Chapter 2. Internal API documentation

https://github.com/paylogic/pip-accel/issues/52
https://github.com/paylogic/pip-accel/issues/52
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True

pip-accel, Release 0.43

PipAccelerator

BinaryDistributionManager

CacheManager SystemPackageManager

LocalCacheBackend S3CacheBackend

The PipAccelerator class receives its configuration object from its caller. Usually this will be main() but
when pip-accel is used as a Python API the person embedding or extending pip-accel is responsible for providing the
configuration object. This is intended as a form of dependency injection that enables non-default configurations to be
injected into pip-accel.

Support for runtime configuration

The properties of the Config class can be set at runtime using regular attribute assignment syntax. This overrides the
default values of the properties (whether based on environment variables, configuration files or hard coded defaults).

Support for configuration files

You can use a configuration file to permanently configure certain options of pip-accel. If /etc/pip-accel.conf
and/or ~/.pip-accel/pip-accel.conf exist they are automatically loaded. You can also set the environment
variable $PIP_ACCEL_CONFIG to load a configuration file in a non-default location. If all three files exist the system
wide file is loaded first, then the user specific file is loaded and then the file set by the environment variable is loaded
(duplicate settings are overridden by the configuration file that’s loaded last).

Here is an example of the available options:

[pip-accel]
auto-install = yes
max-retries = 3
data-directory = ~/.pip-accel
s3-bucket = my-shared-pip-accel-binary-cache

2.1. Documentation for the pip accelerator API 17

http://en.wikipedia.org/wiki/Dependency_injection

pip-accel, Release 0.43

s3-prefix = ubuntu-trusty-amd64
s3-readonly = yes

Note that the configuration options shown above are just examples, they are not meant to represent the configuration
defaults.

class pip_accel.config.Config(load_configuration_files=True, load_environment_variables=True)
Configuration of the pip accelerator.

__init__(load_configuration_files=True, load_environment_variables=True)
Initialize the configuration of the pip accelerator.

Parameters

• load_configuration_files – If this is True (the default) then configuration files
in known locations are automatically loaded.

• load_environment_variables – If this is True (the default) then environment
variables are used to initialize the configuration.

available_configuration_files
A list of strings with the absolute pathnames of the available configuration files.

load_configuration_file(configuration_file)
Load configuration defaults from a configuration file.

Parameters configuration_file – The pathname of a configuration file (a string).

Raises Exception when the configuration file cannot be loaded.

__setattr__(name, value)
Override the value of a property at runtime.

Parameters

• name – The name of the property to override (a string).

• value – The overridden value of the property.

get(property_name=None, environment_variable=None, configuration_option=None, default=None)
Internal shortcut to get a configuration option’s value.

Parameters

• property_name – The name of the property that users can set on the Config class (a
string).

• environment_variable – The name of the environment variable (a string).

• configuration_option – The name of the option in the configuration file (a string).

• default – The default value.

Returns The value of the environment variable or configuration file option or the default value.

cache_format_revision
The revision of the binary distribution cache format in use (an integer).

This number is encoded in the directory name of the binary cache so that multiple revisions can peacefully
coexist. When pip-accel breaks backwards compatibility this number is bumped so that pip-accel starts
using a new directory.

18 Chapter 2. Internal API documentation

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#True

pip-accel, Release 0.43

source_index
The absolute pathname of pip-accel’s source index directory (a string).

This is the sources subdirectory of data_directory .

binary_cache
The absolute pathname of pip-accel’s binary cache directory (a string).

This is the binaries subdirectory of data_directory .

eggs_cache
The absolute pathname of pip-accel’s eggs cache directory (a string).

This is the eggs subdirectory of data_directory . It is used to cache setup requirements which avoids
continuous rebuilding of setup requirements.

data_directory
The absolute pathname of the directory where pip-accel’s data files are stored (a string).

•Environment variable: $PIP_ACCEL_CACHE

•Configuration option: data-directory

•Default: /var/cache/pip-accel if running as root, ~/.pip-accel otherwise

on_debian
True if running on a Debian derived system, False otherwise.

install_prefix
The absolute pathname of the installation prefix to use (a string).

This property is based on sys.prefix except that when sys.prefix is /usr and we’re running on
a Debian derived system /usr/local is used instead.

The reason for this is that on Debian derived systems only apt (dpkg) should be allowed to touch files
in /usr/lib/pythonX.Y/dist-packages and python setup.py install knows this (see
the posix_local installation scheme in /usr/lib/pythonX.Y/sysconfig.py on Debian de-
rived systems). Because pip-accel replaces python setup.py install it has to replicate this logic.
Inferring all of this from the sysconfig module would be nice but that module wasn’t available in
Python 2.6.

python_executable
The absolute pathname of the Python executable (a string).

auto_install
Whether automatic installation of missing system packages is enabled.

True if automatic installation of missing system packages is enabled, False if it is disabled, None
otherwise (in this case the user will be prompted at the appropriate time).

•Environment variable: $PIP_ACCEL_AUTO_INSTALL (refer to coerce_boolean() for details
on how the value of the environment variable is interpreted)

•Configuration option: auto-install (also parsed using coerce_boolean())

•Default: None

log_format
The format of log messages written to the terminal.

•Environment variable: $PIP_ACCEL_LOG_FORMAT

•Configuration option: log-format

•Default: DEFAULT_LOG_FORMAT

2.1. Documentation for the pip accelerator API 19

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/sys.html#sys.prefix
http://docs.python.org/library/sys.html#sys.prefix
http://docs.python.org/library/sysconfig.html#module-sysconfig
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#None
http://humanfriendly.readthedocs.org/en/latest/index.html#humanfriendly.coerce_boolean
http://humanfriendly.readthedocs.org/en/latest/index.html#humanfriendly.coerce_boolean
http://docs.python.org/library/constants.html#None
http://coloredlogs.readthedocs.org/en/latest/index.html#coloredlogs.DEFAULT_LOG_FORMAT

pip-accel, Release 0.43

log_verbosity
The verbosity of log messages written to the terminal.

•Environment variable: $PIP_ACCEL_LOG_VERBOSITY

•Configuration option: log-verbosity

•Default: ‘INFO’ (a string).

max_retries
The number of times to retry pip install --download if it fails.

•Environment variable: $PIP_ACCEL_MAX_RETRIES

•Configuration option: max-retries

•Default: 3

trust_mod_times
Whether to trust file modification times for cache invalidation.

•Environment variable: $PIP_ACCEL_TRUST_MOD_TIMES

•Configuration option: trust-mod-times

•Default: True unless the AppVeyor continuous integration environment is detected (see issue
62).

s3_cache_url
The URL of the Amazon S3 API endpoint to use.

By default this points to the official Amazon S3 API endpoint. You can change this option if you’re running
a local Amazon S3 compatible storage service that you want pip-accel to use.

•Environment variable: $PIP_ACCEL_S3_URL

•Configuration option: s3-url

•Default: https://s3.amazonaws.com

For details please refer to the pip_accel.caches.s3 module.

s3_cache_bucket
Name of Amazon S3 bucket where binary distributions are cached (a string or None).

•Environment variable: $PIP_ACCEL_S3_BUCKET

•Configuration option: s3-bucket

•Default: None

For details please refer to the pip_accel.caches.s3 module.

s3_cache_create_bucket
Whether to automatically create the Amazon S3 bucket when it’s missing.

•Environment variable: $PIP_ACCEL_S3_CREATE_BUCKET

•Configuration option: s3-create-bucket

•Default: False

For details please refer to the pip_accel.caches.s3 module.

s3_cache_prefix
Cache prefix for binary distribution archives in Amazon S3 bucket (a string or None).

•Environment variable: $PIP_ACCEL_S3_PREFIX

20 Chapter 2. Internal API documentation

http://docs.python.org/library/constants.html#True
http://www.appveyor.com
https://github.com/paylogic/pip-accel/issues/62
https://github.com/paylogic/pip-accel/issues/62
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#None

pip-accel, Release 0.43

•Configuration option: s3-prefix

•Default: None

For details please refer to the pip_accel.caches.s3 module.

s3_cache_readonly
Whether the Amazon S3 bucket is considered read only.

If this is True then the Amazon S3 bucket will only be used for get() operations (all put() operations
will be disabled).

•Environment variable: $PIP_ACCEL_S3_READONLY (refer to coerce_boolean() for details
on how the value of the environment variable is interpreted)

•Configuration option: s3-readonly (also parsed using coerce_boolean())

•Default: False

For details please refer to the pip_accel.caches.s3 module.

s3_cache_timeout
The socket timeout in seconds for connections to Amazon S3 (an integer).

This value is injected into Boto’s configuration to override the default socket timeout used for connections
to Amazon S3.

•Environment variable: $PIP_ACCEL_S3_TIMEOUT

•Configuration option: s3-timeout

•Default: 60 (Boto’s default)

s3_cache_retries
The number of times to retry failed requests to Amazon S3 (an integer).

This value is injected into Boto’s configuration to override the default number of times to retry failed
requests to Amazon S3.

•Environment variable: $PIP_ACCEL_S3_RETRIES

•Configuration option: s3-retries

•Default: 5 (Boto’s default)

pip_accel.req

Simple wrapper for pip and pkg_resources Requirement objects.

After downloading the specified requirement(s) pip reports a “requirement set” to pip-accel. In the past pip-accel
would summarize this requirement set into a list of tuples, where each tuple would contain a requirement’s project
name, version and source directory (basically only the information required by pip-accel remained).

Recently I’ve started using pip-accel as a library in another project I’m working on (not yet public) and in that project
I am very interested in whether a given requirement is a direct or transitive requirement. Unfortunately pip-accel did
not preserve this information.

That’s when I decided that next to pip’s pip.req.InstallRequirement and setuptools’
pkg_resources.Requirement I would introduce yet another type of requirement object... It’s basically
just a summary of the other two types of requirement objects and it also provides access to the original requirement
objects (for those who are interested; the interfaces are basically undocumented AFAIK).

class pip_accel.req.Requirement(config, requirement)
Simple wrapper for the requirement objects defined by pip and setuptools.

2.1. Documentation for the pip accelerator API 21

http://docs.python.org/library/constants.html#None
http://docs.python.org/library/constants.html#True
http://humanfriendly.readthedocs.org/en/latest/index.html#humanfriendly.coerce_boolean
http://humanfriendly.readthedocs.org/en/latest/index.html#humanfriendly.coerce_boolean
http://docs.python.org/library/constants.html#False
http://boto.readthedocs.org/en/latest/boto_config_tut.html
http://boto.readthedocs.org/en/latest/boto_config_tut.html

pip-accel, Release 0.43

__init__(config, requirement)
Initialize a requirement object.

Parameters

• config – A Config object.

• requirement – A pip.req.InstallRequirement object.

__repr__()
Generate a human friendly representation of a requirement object.

name
The name of the Python package (a string).

This is the name used to register a package on PyPI and the name reported by commands like pip
freeze. Based on pkg_resources.Requirement.project_name.

version
The version of the package that pip wants to install (a string).

related_archives
The pathnames of the source distribution(s) for this requirement (a list of strings).

Note: This property is very new in pip-accel and its logic may need some time to mature. For now any
misbehavior by this property shouldn’t be too much of a problem because the pathnames reported by this
property are only used for cache invalidation (see the last_modified and checksum properties).

last_modified
The last modified time of the requirement’s source distribution archive(s) (a number).

The value of this property is based on the related_archives property. If no related archives are found
the current time is reported. In the balance between not invalidating cached binary distributions enough
and invalidating them too frequently, this property causes the latter to happen.

checksum
The SHA1 checksum of the requirement’s source distribution archive(s) (a string).

The value of this property is based on the related_archives property. If no related archives are
found the SHA1 digest of the empty string is reported.

source_directory
The pathname of the directory containing the unpacked source distribution (a string).

This is the directory that contains a setup.py script. Based on
pip.req.InstallRequirement.source_dir.

is_wheel
True when the requirement is a wheel, False otherwise.

Note: To my surprise it seems to be non-trivial to determine whether a given
pip.req.InstallRequirement object produced by pip’s internal Python API concerns a
source distribution or a wheel distribution.

There’s a pip.req.InstallRequirement.is_wheel property but I’m currently looking at a
wheel distribution whose is_wheel property returns None, apparently because the requirement’s url
property is also None.

22 Chapter 2. Internal API documentation

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/constants.html#None

pip-accel, Release 0.43

Whether this is an obscure implementation detail of pip or caused by the way pip-accel invokes pip, I really
can’t tell (yet).

is_transitive
Whether the dependency is transitive (indirect).

True when the requirement is a transitive dependency (a dependency of a dependency) or False when
the requirement is a direct dependency (specified on pip’s command line or in a requirements.txt
file). Based on pip.req.InstallRequirement.comes_from.

is_direct
The opposite of Requirement.is_transitive.

is_editable
Whether the requirement should be installed in editable mode.

True when the requirement is to be installed in editable mode (i.e. setuptools “develop mode”). Based on
pip.req.InstallRequirement.editable.

sdist_metadata
Get the distribution metadata of an unpacked source distribution.

wheel_metadata
Get the distribution metadata of an unpacked wheel distribution.

__str__()
Render a human friendly string describing the requirement.

class pip_accel.req.TransactionalUpdate(requirement)
Context manager that enables transactional package upgrades.

__init__(requirement)
Initialize a TransactionalUpdate object.

Parameters requirement – A Requirement object.

__enter__()
Prepare package upgrades by removing conflicting installations.

__exit__(exc_type=None, exc_value=None, traceback=None)
Finalize or rollback a package upgrade.

pip_accel.req.escape_name(requirement_name)
Escape a requirement’s name for use in a regular expression.

This backslash-escapes all non-alphanumeric characters and replaces dashes and underscores with a character
class that matches a dash or underscore (effectively treating dashes and underscores equivalently).

Parameters requirement_name – The name of the requirement (a string).

Returns The requirement’s name as a regular expression (a string).

pip_accel.req.escape_name_callback(match)
Used by escape_name() to treat dashes and underscores as equivalent.

Parameters match – A regular expression match object that captured a single character.

Returns A regular expression string that matches the captured character.

pip_accel.bdist

Functions to manipulate Python binary distribution archives.

2.1. Documentation for the pip accelerator API 23

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True

pip-accel, Release 0.43

The functions in this module are used to create, transform and install from binary distribution archives (which are not
supported by tools like easy_install and pip).

class pip_accel.bdist.BinaryDistributionManager(config)
Generates and transforms Python binary distributions.

__init__(config)
Initialize the binary distribution manager.

Parameters config – The pip-accel configuration (a Config object).

get_binary_dist(requirement)
Get or create a cached binary distribution archive.

Parameters requirement – A Requirement object.

Returns An iterable of tuples with two values each: A tarfile.TarInfo object and a file-
like object.

Gets the cached binary distribution that was previously built for the given requirement. If no binary distri-
bution has been cached yet, a new binary distribution is built and added to the cache.

Uses build_binary_dist() to build binary distribution archives. If this fails with a build error
get_binary_dist() will use SystemPackageManager to check for and install missing system
packages and retry the build when missing system packages were installed.

needs_invalidation(requirement, cache_file)
Check whether a cached binary distribution needs to be invalidated.

Parameters

• requirement – A Requirement object.

• cache_file – The pathname of a cached binary distribution (a string).

Returns True if the cached binary distribution needs to be invalidated, False otherwise.

recall_checksum(cache_file)
Get the checksum of the input used to generate a binary distribution archive.

Parameters cache_file – The pathname of the binary distribution archive (a string).

Returns The checksum (a string) or None (when no checksum is available).

persist_checksum(requirement, cache_file)
Persist the checksum of the input used to generate a binary distribution.

Parameters

• requirement – A Requirement object.

• cache_file – The pathname of a cached binary distribution (a string).

Note: The checksum is only calculated and persisted when trust_mod_times is False.

build_binary_dist(requirement)
Build a binary distribution archive from an unpacked source distribution.

Parameters requirement – A Requirement object.

Returns The pathname of a binary distribution archive (a string).

Raises BinaryDistributionError when the original command and the fall back both fail
to produce a binary distribution archive.

24 Chapter 2. Internal API documentation

http://docs.python.org/library/tarfile.html#tarfile.TarInfo
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/constants.html#False

pip-accel, Release 0.43

This method uses the following command to build binary distributions:

$ python setup.py bdist_dumb --format=tar

This command can fail for two main reasons:

1.The package is missing binary dependencies.

2.The setup.py script doesn’t (properly) implement bdist_dumb binary distribution format sup-
port.

The first case is dealt with in get_binary_dist(). To deal with the second case this method falls
back to the following command:

$ python setup.py bdist

This fall back is almost never needed, but there are Python packages out there which require this fall back
(this method was added because the installation of Paver==1.2.3 failed, see issue 37 for details about
that).

build_binary_dist_helper(requirement, setup_command)
Convert an unpacked source distribution to a binary distribution.

Parameters

• requirement – A Requirement object.

• setup_command – A list of strings with the arguments to setup.py.

Returns The pathname of the resulting binary distribution (a string).

Raises BuildFailed when the build reports an error (e.g. because of missing binary depen-
dencies like system libraries).

Raises NoBuildOutput when the build does not produce the expected binary distribution
archive.

transform_binary_dist(archive_path)
Transform binary distributions into a form that can be cached for future use.

Parameters archive_path – The pathname of the original binary distribution archive.

Returns

An iterable of tuples with two values each:

1. A tarfile.TarInfo object.

2. A file-like object.

This method transforms a binary distribution archive created by build_binary_dist() into a form
that can be cached for future use. This comes down to making the pathnames inside the archive relative to
the prefix that the binary distribution was built for.

install_binary_dist(members, virtualenv_compatible=True, prefix=None, python=None,
track_installed_files=False)

Install a binary distribution into the given prefix.

Parameters

• members – An iterable of tuples with two values each:

1. A tarfile.TarInfo object.

2. A file-like object.

2.1. Documentation for the pip accelerator API 25

https://github.com/paylogic/pip-accel/issues/37
http://docs.python.org/library/tarfile.html#tarfile.TarInfo
http://docs.python.org/library/tarfile.html#tarfile.TarInfo

pip-accel, Release 0.43

• prefix – The “prefix” under which the requirements should be installed. This will be a
pathname like /usr, /usr/local or the pathname of a virtual environment. Defaults
to Config.install_prefix.

• python – The pathname of the Python executable to use in the shebang line
of all executable Python scripts inside the binary distribution. Defaults to
Config.python_executable.

• virtualenv_compatible – Whether to enable workarounds to make the resulting
filenames compatible with virtual environments (defaults to True).

• track_installed_files – If this is True (not the default for this method because
of backwards compatibility) pip-accel will create installed-files.txt as required
by pip to properly uninstall packages.

This method installs a binary distribution created by build_binary_dist() into the given prefix (a
directory like /usr, /usr/local or a virtual environment).

fix_hashbang(contents, python)
Rewrite hashbangs to use the correct Python executable.

Parameters

• contents – The contents of the script whose hashbang should be fixed (a string).

• python – The absolute pathname of the Python executable (a string).

Returns The modified contents of the script (a string).

update_installed_files(installed_files)
Track the files installed by a package so pip knows how to remove the package.

This method is used by install_binary_dist() (which collects the list of installed files for
update_installed_files()).

Parameters installed_files – A list of absolute pathnames (strings) with the files that
were just installed.

pip_accel.caches

Support for multiple cache backends.

This module defines an abstract base class (AbstractCacheBackend) to be inherited by custom cache backends
in order to easily integrate them in pip-accel. The cache backends included in pip-accel are built on top of the same
mechanism.

Additionally this module defines CacheManager which makes it possible to merge the available cache backends
into a single logical cache which automatically disables backends that report errors.

class pip_accel.caches.CacheBackendMeta(name, bases, dict)
Metaclass to intercept cache backend definitions.

__init__(name, bases, dict)
Intercept cache backend definitions.

class pip_accel.caches.AbstractCacheBackend(config)
Abstract base class for implementations of pip-accel cache backends.

Subclasses of this class are used by pip-accel to store Python distribution archives in order to accelerate perfor-
mance and gain independence of external systems like PyPI and distribution sites.

26 Chapter 2. Internal API documentation

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#True
http://en.wikipedia.org/wiki/Shebang_(Unix)

pip-accel, Release 0.43

Note: This base class automatically registers subclasses at definition time, providing a simple and elegant
registration mechanism for custom backends. This technique uses metaclasses and was originally based on the
article Using Metaclasses to Create Self-Registering Plugins.

I’ve since had to introduce some additional magic to make this mechanism compatible with both Python 2.x
and Python 3.x because the syntax for metaclasses is very much incompatible and I refuse to write separate
implementations for both :-).

__init__(config)
Initialize a cache backend.

Parameters config – The pip-accel configuration (a Config object).

get(filename)
Get a previously cached distribution archive from the cache.

Parameters filename – The expected filename of the distribution archive (a string).

Returns The absolute pathname of a local file or Nonewhen the distribution archive hasn’t been
cached.

This method is called by pip-accel before fetching or building a distribution archive, in order to check
whether a previously cached distribution archive is available for re-use.

put(filename, handle)
Store a newly built distribution archive in the cache.

Parameters

• filename – The filename of the distribution archive (a string).

• handle – A file-like object that provides access to the distribution archive.

This method is called by pip-accel after fetching or building a distribution archive, in order to cache the
distribution archive.

__repr__()
Generate a textual representation of the cache backend.

class pip_accel.caches.CacheManager(config)
Interface to treat multiple cache backends as a single one.

The cache manager automatically disables cache backends that raise exceptions on get() and put() opera-
tions.

__init__(config)
Initialize a cache manager.

Automatically initializes instances of all registered cache backends based on setuptools’ support for entry
points which makes it possible for external Python packages to register additional cache backends without
any modifications to pip-accel.

Parameters config – The pip-accel configuration (a Config object).

get(requirement)
Get a distribution archive from any of the available caches.

Parameters requirement – A Requirement object.

Returns The absolute pathname of a local file or None when the distribution archive is missing
from all available caches.

2.1. Documentation for the pip accelerator API 27

http://effbot.org/zone/metaclass-plugins.htm
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/constants.html#None

pip-accel, Release 0.43

put(requirement, handle)
Store a distribution archive in all of the available caches.

Parameters

• requirement – A Requirement object.

• handle – A file-like object that provides access to the distribution archive.

generate_filename(requirement)
Generate a distribution archive filename for a package.

Parameters requirement – A Requirement object.

Returns The filename of the distribution archive (a string) including a single leading directory
component to indicate the cache format revision.

pip_accel.caches.local

Local file system cache backend.

This module implements the local cache backend which stores distribution archives on the local file system. This is a
very simple cache backend, all it does is create directories and write local files. The only trick here is that new binary
distribution archives are written to temporary files which are then moved into place atomically using os.rename()
to avoid partial reads caused by running multiple invocations of pip-accel at the same time (which happened in issue
25).

class pip_accel.caches.local.LocalCacheBackend(config)
The local cache backend stores Python distribution archives on the local file system.

get(filename)
Check if a distribution archive exists in the local cache.

Parameters filename – The filename of the distribution archive (a string).

Returns The pathname of a distribution archive on the local file system or None.

put(filename, handle)
Store a distribution archive in the local cache.

Parameters

• filename – The filename of the distribution archive (a string).

• handle – A file-like object that provides access to the distribution archive.

pip_accel.caches.s3

Amazon S3 cache backend.

This module implements a cache backend that stores distribution archives in a user defined Amazon S3 bucket. To
enable this backend you need to define the configuration option s3_cache_bucket and configure your Amazon S3
API credentials (see the readme for details).

Using S3 compatible storage services

The Amazon S3 API has been implemented in several open source projects and dozens of online services. To use pip-
accel with an S3 compatible storage service you can override the s3_cache_url option. The pip-accel test suite
actually uses this option to test the S3 cache backend by running FakeS3 in the background and pointing pip-accel at
the FakeS3 server. Below are some usage notes that may be relevant for people evaluating this option.

28 Chapter 2. Internal API documentation

http://docs.python.org/library/os.html#os.rename
https://github.com/paylogic/pip-accel/issues/25
https://github.com/paylogic/pip-accel/issues/25
http://docs.python.org/library/constants.html#None
http://aws.amazon.com/s3/
https://github.com/jubos/fake-s3

pip-accel, Release 0.43

Secure connections Boto has to be told whether to make a “secure” connection to the S3 API and pip-accel assumes
the https:// URL scheme implies a secure connection while the http:// URL scheme implies a non-
secure connection.

Calling formats Boto has the concept of “calling formats” for the S3 API and to connect to the official Amazon S3
API pip-accel needs to specify the “sub-domain calling format” or the API calls will fail. When you specify a
nonstandard S3 API URL pip-accel tells Boto to use the “ordinary calling format” instead. This differentiation
will undoubtedly not be correct in all cases. If this is bothering you then feel free to open an issue on GitHub to
make pip-accel more flexible in this regard.

Credentials If you don’t specify S3 API credentials and the connection attempt to S3 fails with “NoAuthHandler-
Found: No handler was ready to authenticate” pip-accel will fall back to an anonymous connection attempt. If
that fails as well the S3 cache backend is disabled. It may be useful to note here that the pip-accel test suite uses
FakeS3 and the anonymous connection fall back works fine.

A note about robustness

The Amazon S3 cache backend implemented in pip_accel.caches.s3 is specifically written to gracefully dis-
able itself when it encounters known errors such as:

• The configuration option s3_cache_bucket is not set (i.e. the user hasn’t configured the backend yet).

• The boto package is not installed (i.e. the user ran pip install pip-accel instead of pip install
’pip-accel[s3]’).

• The connection to the S3 API can’t be established (e.g. because API credentials haven’t been correctly config-
ured).

• The connection to the configured S3 bucket can’t be established (e.g. because the bucket doesn’t exist or the
configured credentials don’t provide access to the bucket).

Additionally CacheManager automatically disables cache backends that raise exceptions on get() and put()
operations. The end result is that when the S3 backend fails you will just revert to using the cache on the local file
system.

Optionally if you are using read only credentials you can disable put() operations by setting the configuration option
s3_cache_readonly .

class pip_accel.caches.s3.S3CacheBackend(config)
The S3 cache backend stores distribution archives in a user defined Amazon S3 bucket.

get(filename)
Download a distribution archive from the configured Amazon S3 bucket.

Parameters filename – The filename of the distribution archive (a string).

Returns The pathname of a distribution archive on the local file system or None.

Raises CacheBackendError when any underlying method fails.

put(filename, handle)
Upload a distribution archive to the configured Amazon S3 bucket.

If the s3_cache_readonly configuration option is enabled this method does nothing.

Parameters

• filename – The filename of the distribution archive (a string).

• handle – A file-like object that provides access to the distribution archive.

2.1. Documentation for the pip accelerator API 29

https://github.com/boto/boto
https://github.com/boto/boto
https://github.com/jubos/fake-s3
http://boto.readthedocs.org/en/latest/ref/boto.html#module-boto
http://docs.python.org/library/constants.html#None

pip-accel, Release 0.43

Raises CacheBackendError when any underlying method fails.

s3_bucket
Connect to the user defined Amazon S3 bucket.

Called on demand by get() and put(). Caches its return value so that only a single connection is
created.

Returns A boto.s3.bucket.Bucket object.

Raises CacheBackendDisabledError when the user hasn’t defined
Config.s3_cache_bucket.

Raises CacheBackendError when the connection to the Amazon S3 bucket fails.

s3_connection
Connect to the Amazon S3 API.

If the connection attempt fails because Boto can’t find credentials the attempt is retried once with an
anonymous connection.

Called on demand by s3_bucket.

Returns A boto.s3.connection.S3Connection object.

Raises CacheBackendError when the connection to the Amazon S3 API fails.

get_cache_key(filename)
Compose an S3 cache key based on Config.s3_cache_prefix and the given filename.

Parameters filename – The filename of the distribution archive (a string).

Returns The cache key for the given filename (a string).

check_prerequisites()
Validate the prerequisites required to use the Amazon S3 cache backend.

Makes sure the Amazon S3 cache backend is configured (Config.s3_cache_bucket is defined by
the user) and boto is available for use.

Raises CacheBackendDisabledError when a prerequisite fails.

class pip_accel.caches.s3.PatchedBotoConfig
Monkey patch for Boto’s configuration handling.

Boto’s configuration handling is kind of broken on Python 3 as documented here. The PatchedBotoConfig
class implements a context manager that temporarily patches Boto to work around the bug.

Without this monkey patch it is impossible to configure the number of retries on Python 3 which makes the
pip-accel test suite horribly slow.

__init__()
Initialize a PatchedBotoConfig object.

get(section, name, default=None, **kw)
Replacement for boto.pyami.config.Config.get().

pip_accel.deps

System package dependency handling.

The pip_accel.deps module is an extension of pip-accel that deals with dependencies on system packages. Cur-
rently only Debian Linux and derivative Linux distributions are supported by this extension but it should be fairly easy
to add support for other platforms.

30 Chapter 2. Internal API documentation

http://boto.readthedocs.org/en/latest/ref/s3.html#boto.s3.bucket.Bucket
http://boto.readthedocs.org/en/latest/ref/s3.html#boto.s3.connection.S3Connection
http://boto.readthedocs.org/en/latest/ref/boto.html#module-boto
https://github.com/boto/boto/issues/2617

pip-accel, Release 0.43

The interface between pip-accel and SystemPackageManager focuses on install_dependencies() (the
other methods are used internally).

class pip_accel.deps.SystemPackageManager(config)
Interface to the system’s package manager.

__init__(config)
Initialize the system package dependency manager.

Parameters config – The pip-accel configuration (a Config object).

install_dependencies(requirement)
Install missing dependencies for the given requirement.

Parameters requirement – A Requirement object.

Returns True when missing system packages were installed, False otherwise.

Raises DependencyInstallationRefused when automatic installation is disabled or re-
fused by the operator.

Raises DependencyInstallationFailed when the installation of missing system pack-
ages fails.

If pip-accel fails to build a binary distribution, it will call this method as a last chance to install missing
dependencies. If this function does not raise an exception, pip-accel will retry the build once.

find_missing_dependencies(requirement)
Find missing dependencies of a Python package.

Parameters requirement – A Requirement object.

Returns A list of strings with system package names.

find_known_dependencies(requirement)
Find the known dependencies of a Python package.

Parameters requirement – A Requirement object.

Returns A list of strings with system package names.

find_installed_packages()
Find the installed system packages.

Returns A list of strings with system package names.

Raises SystemDependencyError when the command to list the installed system packages
fails.

installation_refused(requirement, missing_dependencies, reason)
Raise DependencyInstallationRefused with a user friendly message.

Parameters

• requirement – A Requirement object.

• missing_dependencies – A list of strings with missing dependencies.

• reason – The reason why installation was refused (a string).

confirm_installation(requirement, missing_dependencies, install_command)
Ask the operator’s permission to install missing system packages.

Parameters

• requirement – A Requirement object.

2.1. Documentation for the pip accelerator API 31

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False

pip-accel, Release 0.43

• missing_dependencies – A list of strings with missing dependencies.

• install_command – A list of strings with the command line needed to install the
missing dependencies.

Raises DependencyInstallationRefused when the operator refuses.

pip_accel.utils

Utility functions for the pip accelerator.

The pip_accel.utils module defines several miscellaneous/utility functions that are used throughout
pip_accel but don’t really belong with any single module.

pip_accel.utils.compact(text, **kw)
Compact whitespace in a string and format any keyword arguments into the string.

Parameters

• text – The text to compact (a string).

• kw – Any keyword arguments to apply using str.format().

Returns The compacted, formatted string.

The whitespace compaction preserves paragraphs.

pip_accel.utils.expand_path(pathname)
Expand the home directory in a pathname based on the effective user id.

Parameters pathname – A pathname that may start with ~/, indicating the path should be inter-
preted as being relative to the home directory of the current (effective) user.

Returns The (modified) pathname.

This function is a variant of os.path.expanduser() that doesn’t use $HOME but instead uses the home
directory of the effective user id. This is basically a workaround for sudo -s not resetting $HOME.

pip_accel.utils.create_file_url(pathname)
Create a file:... URL from a local pathname.

Parameters pathname – The pathname of a local file or directory (a string).

Returns A URL that refers to the local file or directory (a string).

pip_accel.utils.find_home_directory()
Look up the home directory of the effective user id.

Returns The pathname of the home directory (a string).

Note: On Windows this uses the %APPDATA% environment variable (if available) and otherwise falls back to
~/Application Data.

pip_accel.utils.is_root()
Detect whether we’re running with super user privileges.

pip_accel.utils.get_python_version()
Get a string identifying the currently running Python version.

This function generates a string that uniquely identifies the currently running Python implementation and ver-
sion. The Python implementation is discovered using platform.python_implementation() and the
major and minor version numbers are extracted from sys.version_info.

32 Chapter 2. Internal API documentation

http://docs.python.org/library/os.path.html#os.path.expanduser
http://docs.python.org/library/platform.html#platform.python_implementation
http://docs.python.org/library/sys.html#sys.version_info

pip-accel, Release 0.43

Returns A string containing the name of the Python implementation and the major and minor ver-
sion numbers.

Example:

>>> from pip_accel.utils import get_python_version
>>> get_python_version()
'CPython-2.7'

pip_accel.utils.makedirs(path, mode=511)
Create a directory if it doesn’t already exist (keeping concurrency in mind).

Parameters

• path – The pathname of the directory to create (a string).

• mode – The mode to apply to newly created directories (an integer, defaults to the octal
number 0777).

Returns True when the directory was created, False if it already existed.

Raises Any exceptions raised by os.makedirs() except for errno.EEXIST (this error is swal-
lowed and False is returned instead).

pip_accel.utils.same_directories(path1, path2)
Check if two pathnames refer to the same directory.

Parameters

• path1 – The first pathname (a string).

• path2 – The second pathname (a string).

Returns True if both pathnames refer to the same directory, False otherwise.

pip_accel.utils.hash_files(method, *files)
Calculate the hexadecimal digest of one or more local files.

Parameters

• method – The hash method (a string, given to hashlib.new()).

• files – The pathname(s) of file(s) to hash (zero or more strings).

Returns The calculated hex digest (a string).

pip_accel.utils.replace_file(src, dst)
Overwrite a file (in an atomic fashion when possible).

Parameters

• src – The pathname of the source file (a string).

• dst – The pathname of the destination file (a string).

class pip_accel.utils.AtomicReplace(filename)
Context manager to atomically replace a file’s contents.

__init__(filename)
Initialize a AtomicReplace object.

Parameters filename – The pathname of the file to replace (a string).

__enter__()
Prepare to replace the file’s contents.

2.1. Documentation for the pip accelerator API 33

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/os.html#os.makedirs
http://docs.python.org/library/errno.html#errno.EEXIST
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False

pip-accel, Release 0.43

Returns The pathname of a temporary file in the same directory as the file to replace (a string).
Using this temporary file ensures that replace_file() doesn’t fail due to a cross-device
rename operation.

__exit__(exc_type=None, exc_value=None, traceback=None)
Replace the file’s contents (if no exception occurred) using replace_file().

pip_accel.utils.requirement_is_installed(expr)
Check whether a requirement is installed.

Parameters expr – A requirement specification similar to those used in pip requirement files (a
string).

Returns True if the requirement is available (installed), False otherwise.

pip_accel.utils.is_installed(package_name)
Check whether a package is installed in the current environment.

Parameters package_name – The name of the package (a string).

Returns True if the package is installed, False otherwise.

pip_accel.utils.uninstall(*package_names)
Uninstall one or more packages using the Python equivalent of pip uninstall --yes.

The package(s) to uninstall must be installed, otherwise pip will raise an UninstallationError. You can
check for installed packages using is_installed().

Parameters package_names – The names of one or more Python packages (strings).

pip_accel.utils.match_option(argument, short_option, long_option)
Match a command line argument against a short and long option.

Parameters

• argument – The command line argument (a string).

• short_option – The short option (a string).

• long_option – The long option (a string).

Returns True if the argument matches, False otherwise.

pip_accel.utils.is_short_option(argument)
Check if a command line argument is a short option.

Parameters argument – The command line argument (a string).

Returns True if the argument is a short option, False otherwise.

pip_accel.utils.match_option_with_value(arguments, option, value)
Check if a list of command line options contains an option with a value.

Parameters

• arguments – The command line arguments (a list of strings).

• option – The long option (a string).

• value – The expected value (a string).

Returns True if the command line contains the option/value pair, False otherwise.

pip_accel.utils.contains_sublist(lst, sublst)
Check if one list contains the items from another list (in the same order).

Parameters

34 Chapter 2. Internal API documentation

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False

pip-accel, Release 0.43

• lst – The main list.

• sublist – The sublist to check for.

Returns True if the main list contains the items from the sublist in the same order, False other-
wise.

Based on this StackOverflow answer.

pip_accel.exceptions

Exceptions for structured error handling.

This module defines named exceptions raised by pip-accel when it encounters error conditions that:

1. Already require structured handling inside pip-accel

2. May require structured handling by callers of pip-accel

Yes, I know, I just made your lovely and elegant Python look a whole lot like Java! I guess the message to take away
here is that (in my opinion) structured error handling helps to build robust software that acknowledges failures exist
and tries to deal with them (even if only by clearly recognizing a problem and giving up when there’s nothing useful
to do!).

Hierarchy of exceptions

If you’re interested in implementing structured handling of exceptions reported by pip-accel the following diagram
may help by visualizing the hierarchy:

BinaryDistributionError

BuildFailed

InvalidSourceDistribution

NoBuildOutput

PipAcceleratorError

CacheBackendError

SystemDependencyError

EnvironmentMismatchError

UnknownDistributionFormat

CacheBackendDisabledError

DependencyInstallationFailed

DependencyInstallationRefused

exception pip_accel.exceptions.PipAcceleratorError(text, **kw)
Base exception for all exception types explicitly raised by pip_accel.

2.1. Documentation for the pip accelerator API 35

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://stackoverflow.com/a/3314913

pip-accel, Release 0.43

__init__(text, **kw)
Initialize a PipAcceleratorError object.

Accepts the same arguments as compact().

exception pip_accel.exceptions.NothingToDoError(text, **kw)
Custom exception raised on empty requirement sets.

Raised by get_pip_requirement_set() when pip doesn’t report an error but also doesn’t generate a
requirement set (this happens when the user specifies an empty requirements file).

exception pip_accel.exceptions.EnvironmentMismatchError(text, **kw)
Custom exception raised when a cross-environment action is attempted.

Raised by validate_environment() when it detects a mismatch between sys.prefix and
$VIRTUAL_ENV.

exception pip_accel.exceptions.UnknownDistributionFormat(text, **kw)
Custom exception raised on unrecognized distribution archives.

Raised by is_wheel when it cannot discern whether a given unpacked distribution is a source distribution or
a wheel distribution.

exception pip_accel.exceptions.BinaryDistributionError(text, **kw)
Base class for exceptions related to the generation of binary distributions.

exception pip_accel.exceptions.InvalidSourceDistribution(text, **kw)
Custom exception raised when a source distribution’s setup script is missing.

Raised by build_binary_dist() when the given directory doesn’t contain a Python source distribution.

exception pip_accel.exceptions.BuildFailed(text, **kw)
Custom exception raised when a binary distribution build fails.

Raised by build_binary_dist() when a binary distribution build fails.

exception pip_accel.exceptions.NoBuildOutput(text, **kw)
Custom exception raised when binary distribution builds don’t generate an archive.

Raised by build_binary_dist() when a binary distribution build fails to produce the expected binary
distribution archive.

exception pip_accel.exceptions.CacheBackendError(text, **kw)
Custom exception raised by cache backends when they fail in a controlled manner.

exception pip_accel.exceptions.CacheBackendDisabledError(text, **kw)
Custom exception raised by cache backends when they require configuration.

exception pip_accel.exceptions.SystemDependencyError(text, **kw)
Base class for exceptions related to missing system packages.

exception pip_accel.exceptions.DependencyInstallationRefused(text, **kw)
Custom exception raised when installation of dependencies is refused.

Raised by SystemPackageManager when one or more known to be required system packages are missing
and automatic installation of missing dependencies is disabled by the operator.

exception pip_accel.exceptions.DependencyInstallationFailed(text, **kw)
Custom exception raised when installation of dependencies fails.

Raised by SystemPackageManager when the installation of missing system packages fails.

36 Chapter 2. Internal API documentation

http://docs.python.org/library/sys.html#sys.prefix

pip-accel, Release 0.43

pip_accel.tests

Test suite for the pip accelerator.

I’ve decided to include the test suite in the online documentation of the pip accelerator and I realize this may be
somewhat unconventional... My reason for this is to enforce the same level of code quality (which obviously includes
documentation) for the test suite that I require from myself and contributors for the other parts of the pip-accel project
(and my other open source projects).

A second and more subtle reason is because of a tendency I’ve noticed in a lot of my projects: Useful “miscellaneous”
functionality is born in test suites and eventually makes its way to the public API of the project in question. By writing
documentation up front I’m saving my future self time. That may sound silly, but consider that writing documentation
is a lot easier when you don’t have to do so retroactively.

pip_accel.tests.setUpModule()
Initialize verbose logging to the terminal.

pip_accel.tests.tearDownModule()
Cleanup any temporary directories created by create_temporary_directory().

pip_accel.tests.delete_read_only(action, pathname, exc_info)
Force removal of read only files on Windows.

Based on http://stackoverflow.com/a/21263493/788200. Needed because of
https://ci.appveyor.com/project/xolox/pip-accel/build/1.0.24.

pip_accel.tests.create_temporary_directory(**kw)
Create a temporary directory that will be cleaned up when the test suite ends.

Parameters kw – Any keyword arguments are passed on to tempfile.mkdtemp().

Returns The pathname of a directory created using tempfile.mkdtemp() (a string).

class pip_accel.tests.PipAccelTestCase(methodName=’runTest’)
Container for the tests in the pip-accel test suite.

setUp()
Reset logging verbosity before each test.

skipTest(text, *args, **kw)
Enable backwards compatible “marking of tests to skip”.

By calling this method from a return statement in the test to be skipped the test can be marked as skipped
when possible, without breaking the test suite when unittest.TestCase.skipTest() isn’t available.

initialize_pip_accel(load_environment_variables=False, **overrides)
Construct an isolated pip accelerator instance.

The pip-accel instance will not load configuration files but it may load environment variables because that’s
how FakeS3 is enabled on Travis CI (and in my local tests).

Parameters

• load_environment_variables – If True the pip-accel instance will load environ-
ment variables (not the default).

• overrides – Any keyword arguments are set as properties on the Config instance
(overrides for configuration defaults).

test_related_archives_logic()
Test filename translation logic used by pip_accel.req.Requirement.related_archives.

2.1. Documentation for the pip accelerator API 37

http://stackoverflow.com/a/21263493/788200
https://ci.appveyor.com/project/xolox/pip-accel/build/1.0.24
http://docs.python.org/library/tempfile.html#tempfile.mkdtemp
http://docs.python.org/library/tempfile.html#tempfile.mkdtemp
http://docs.python.org/library/constants.html#True

pip-accel, Release 0.43

The pip_accel.req.escape_name() function generates regular expression patterns that match the
given requirement name literally while treating dashes and underscores as equivalent. This test ensures
that the generated regular expression patterns work as expected.

test_environment_validation()
Test the validation of sys.prefix versus $VIRTUAL_ENV.

This tests the validate_environment() method.

test_config_object_handling()
Test that configuration options can be overridden in the Python API.

test_config_file_handling()
Test error handling during loading of configuration files.

This tests the load_configuration_file() method.

test_cleanup_of_broken_links()
Verify that broken symbolic links in the source index are cleaned up.

This tests the clean_source_index() method.

test_empty_download_cache()
Verify pip-accel’s “keeping pip off the internet” logic using an empty cache.

This test downloads, builds and installs pep8 1.6.2 to verify that pip-accel keeps pip off the internet when
intended.

test_package_upgrade()
Test installation of newer versions over older versions.

test_package_downgrade()
Test installation of older versions over newer version (package downgrades).

test_s3_backend()
Verify the successful usage of the S3 cache backend.

This test downloads, builds and installs pep8 1.6.2 several times to verify that the S3 cache backend works.
It depends on FakeS3.

This test uses a temporary binary index which it wipes after a successful installation and then it installs the
exact same package again to test the code path that gets a cached binary distribution archive from the S3
cache backend.

Warning: This test abuses FakeS3 in several ways to simulate the handling of error conditions (it’s
not pretty but it is effective because it significantly increases the coverage of the S3 cache backend):

1.First the FakeS3 root directory is made read only to force an error when uploading to S3.
This is to test the automatic fall back to a read only S3 bucket.

2.Then FakeS3 is terminated to force a failure in the S3 cache backend. This verifies that pip-
accel handles the failure of an “optional” cache backend gracefully.

test_wheel_install()
Test the installation of a package from a wheel distribution.

This test installs Paver 1.2.4 (a random package without dependencies that I noticed is available as a Python
2.x and Python 3.x compatible wheel archive on PyPI).

test_bdist_fallback()
Verify that fall back from bdist_dumb to bdist action works.

38 Chapter 2. Internal API documentation

http://docs.python.org/library/sys.html#sys.prefix

pip-accel, Release 0.43

This test verifies that pip-accel properly handles setup.py scripts that break python setup.py
bdist_dumb but support python setup.py bdist as a fall back. This issue was originally re-
ported based on Paver==1.2.3 in issue 37, so that’s the package used for this test.

test_installed_files_tracking()
Verify that tracking of installed files works correctly.

This tests the update_installed_files() method.

When pip installs a Python package it also creates a file called installed-files.txt that contains
the pathnames of the files that were installed. This file enables pip to uninstall Python packages later on.
Because pip-accel implements its own package installation it also creates the installed-files.txt
file, in order to enable the user to uninstall a package with pip even if the package was installed using
pip-accel.

test_setuptools_injection()
Test that setup.py scripts are always evaluated using setuptools.

This test installs docutils==0.12 as a sample package whose setup.py script uses distutils instead
of setuptools. Because pip and pip-accel unconditionally evaluate setup.py scripts using setuptools
instead of distutils the resulting installation should have an *.egg-info metadata directory instead of a
file (which is what this test verifies).

test_requirement_objects()
Test the public properties of pip_accel.req.Requirement objects.

This test confirms (amongst other things) that the logic which distinguishes transitive requirements from
non-transitive (direct) requirements works correctly (and keeps working as expected :-).

test_editable_install()
Test the installation of editable packages using pip install --editable.

This test clones the git repository of the Python package pycodestyle and installs the package as an editable
package.

We want to import the pycodestyle module to confirm that it was properly installed but we can’t do that
in the process that’s running the test suite because it will fail with an import error. Python subprocesses
however will import the pycodestyle module just fine.

This happens because easy-install.pth (used for editable packages) is loaded once during startup
of the Python interpreter and never refreshed. There’s no public, documented way that I know of to refresh
sys.path (see issue 402 in the Gunicorn issue tracker for a related discussion).

test_setup_requires_caching()
Test that pip_accel.SetupRequiresPatch works as expected.

This test is a bit convoluted because I haven’t been able to find a simpler way to ensure that setup require-
ments can be re-used from the .eggs directory managed by pip-accel. A side effect inside the setup script
seems to be required, but the setuptools sandbox forbids writing to files outside the build directory so an
external command needs to be used ...

generate_package(name, version, source_index, tracker_script, find_links=None,
setup_requires=[])

Helper for test_setup_requires_caching() to generate temporary Python packages.

test_time_based_cache_invalidation()
Test default cache invalidation logic (based on modification times).

When a source distribution archive is changed the cached binary distribution archive is invalidated and
rebuilt. This test ensures that the default cache invalidation logic (based on modification times of files)
works as expected.

2.1. Documentation for the pip accelerator API 39

https://github.com/paylogic/pip-accel/issues/37
http://docs.python.org/library/sys.html#sys.path
https://github.com/benoitc/gunicorn/issues/402

pip-accel, Release 0.43

test_checksum_based_cache_invalidation()
Test alternate cache invalidation logic (based on checksums).

When a source distribution archive is changed the cached binary distribution archive is invalidated and
rebuilt. This test ensures that the alternate cache invalidation logic (based on SHA1 checksums of files)
works as expected.

check_cache_invalidation(**overrides)
Test cache invalidation with the given option(s).

test_cli_install()
Test the pip-accel command line interface by installing a trivial package.

This test provides some test coverage for the pip-accel command line interface, to make sure the command
line interface works on all supported versions of Python.

test_cli_usage_message()
Test the pip-accel command line usage message.

test_cli_as_module()
Make sure python -m pip_accel ... works.

test_constraint_file_support()
Test support for constraint files.

With the pip 7.x upgrade support for constraint files was added to pip. Due to the way this was implemented
in pip the use of constraint files would break pip-accel as reported in issue 63. The issue was since fixed
and this test makes sure constraint files remain supported.

test_empty_requirements_file()
Test handling of empty requirements files.

Old versions of pip-accel would raise an internal exception when an empty requirements file was given.
This was reported in issue 47 and it was pointed out that pip reports a warning but exits with return code
zero. This test makes sure pip-accel now handles empty requirements files the same way pip does.

test_system_package_dependency_installation()
Test the (automatic) installation of required system packages.

This test installs cffi 0.8.6 to confirm that the system packages required by cffi are automatically installed
by pip-accel to make the build of cffi succeed.

Warning: This test forces the removal of the system package libffi-dev before it tries to in-
stall cffi, because without this nasty hack the test would only install required system packages on
the first run, because on later runs the required system packages would already be installed. Be-
cause of this very non conventional behavior the test is skipped unless the environment variable
PIP_ACCEL_TEST_AUTO_INSTALL=yes is set (opt-in).

test_system_package_dependency_failures()
Test that unsupported platforms are handled gracefully in system package dependency management.

pycodestyle_git_repo
The pathname of a git clone of the pycodestyle (formerly pep8) package (None if git fails).

pip_accel.tests.wipe_directory(pathname)
Delete and recreate a directory.

Parameters pathname – The directory’s pathname (a string).

pip_accel.tests.create_source_dist(sources)
Create a source distribution archive from a Python package.

40 Chapter 2. Internal API documentation

https://github.com/paylogic/pip-accel/issues/63
https://github.com/paylogic/pip-accel/issues/47
http://docs.python.org/library/constants.html#None

pip-accel, Release 0.43

Parameters sources – A dictionary containing a setup.py script (a string).

Returns The pathname of the generated archive (a string).

pip_accel.tests.uninstall_through_subprocess(package_name)
Remove an installed Python package by running pip as a subprocess.

Parameters package_name – The name of the package (a string).

This function is specifically for use in the pip-accel test suite to reliably uninstall a Python package installed in
the current environment while avoiding issues caused by stale data in pip and the packages it uses internally.
Doesn’t complain if the package isn’t installed to begin with.

pip_accel.tests.find_installed_version(package_name, encoding=’UTF-8’)
Find the version of an installed package (in a subprocess).

Parameters package_name – The name of the package (a string).

Returns The package’s version (a string) or None if the package can’t be found.

This function is specifically for use in the pip-accel test suite to reliably determine the installed version of a
Python package in the current environment while avoiding issues caused by stale data in pip and the packages it
uses internally.

pip_accel.tests.find_one_file(directory, pattern)
Use find_files() to find a file and make sure a single file is matched.

Parameters

• directory – The pathname of the directory to be searched (a string).

• pattern – The filename pattern to match (a string).

Returns The matched pathname (a string).

Raises AssertionError when no file or more than one file is matched.

pip_accel.tests.find_files(directory, pattern)
Find files whose pathname contains the given substring.

Parameters

• directory – The pathname of the directory to be searched (a string).

• pattern – The filename pattern to match (a string).

Returns A generator of pathnames (strings).

pip_accel.tests.try_program(program_name)
Test that a Python program (installed in the current environment) runs successfully.

This assumes that the program supports the --help option, because the program is executed with the --help
argument to verify that the program runs (--help was chose because it implies a lack of side effects).

Parameters program_name – The base name of the program to test (a string). The absolute
pathname will be calculated by combining sys.prefix and this argument.

Raises AssertionError when a test fails.

pip_accel.tests.find_python_program(program_name)
Get the absolute pathname of a Python program installed in the current environment.

Parameters name – The base name of the program (a string).

Returns The absolute pathname of the program (a string).

2.1. Documentation for the pip accelerator API 41

http://docs.python.org/library/constants.html#None
http://docs.python.org/library/exceptions.html#exceptions.AssertionError
http://docs.python.org/library/sys.html#sys.prefix
http://docs.python.org/library/exceptions.html#exceptions.AssertionError

pip-accel, Release 0.43

pip_accel.tests.generate_nonexisting_pathname()
Generate a pathname that is expected not to exist.

Returns A pathname (string) that doesn’t refer to an existing directory or file on the file system
(assuming random.random() does what it’s documented to do :-).

pip_accel.tests.test_cli(*arguments)
Test the pip-accel command line interface.

Runs pip-accel’s command line interface inside the current Python process by temporarily changing sys.argv,
invoking the pip_accel.cli.main() function and catching SystemExit.

Parameters arguments – The value that sys.argv should be set to (a list of strings).

Returns The exit code of pip-accel.

class pip_accel.tests.CaptureOutput
Context manager that captures what’s written to sys.stdout.

__init__()
Initialize a string IO object to be used as sys.stdout.

__enter__()
Start capturing what’s written to sys.stdout.

__exit__(exc_type=None, exc_value=None, traceback=None)
Stop capturing what’s written to sys.stdout.

__str__()
Get the text written to sys.stdout.

class pip_accel.tests.AptLock
Cross-process locking for critical sections to enable parallel execution of the test suite.

__init__()
Initialize an AptLock object.

class pip_accel.tests.FakeS3Server(**options)
Subclass of ExternalCommand that manages a temporary FakeS3 server.

__init__(**options)
Initialize a FakeS3Server object.

root = None
The pathname of the temporary directory used to store the files required to run the FakeS3 server (a string).

client_options
Configuration options for pip-accel to connect with the FakeS3 server.

This is a dictionary of keyword arguments for the Config initializer to make pip-accel connect with the
FakeS3 server.

42 Chapter 2. Internal API documentation

http://docs.python.org/library/random.html#random.random
http://docs.python.org/library/sys.html#sys.argv
http://docs.python.org/library/exceptions.html#exceptions.SystemExit
http://docs.python.org/library/sys.html#sys.argv
http://docs.python.org/library/sys.html#sys.stdout
http://docs.python.org/library/sys.html#sys.stdout
http://docs.python.org/library/sys.html#sys.stdout
http://docs.python.org/library/sys.html#sys.stdout
http://docs.python.org/library/sys.html#sys.stdout

Python Module Index

p
pip_accel, 10
pip_accel.bdist, 23
pip_accel.caches, 26
pip_accel.caches.local, 28
pip_accel.caches.s3, 28
pip_accel.config, 16
pip_accel.deps, 30
pip_accel.exceptions, 35
pip_accel.req, 21
pip_accel.tests, 37
pip_accel.utils, 32

43

pip-accel, Release 0.43

44 Python Module Index

Index

Symbols
__enter__() (pip_accel.DownloadLogFilter method), 14
__enter__() (pip_accel.PatchedAttribute method), 15
__enter__() (pip_accel.SetupRequiresPatch method), 15
__enter__() (pip_accel.req.TransactionalUpdate method),

23
__enter__() (pip_accel.tests.CaptureOutput method), 42
__enter__() (pip_accel.utils.AtomicReplace method), 33
__exit__() (pip_accel.DownloadLogFilter method), 14
__exit__() (pip_accel.PatchedAttribute method), 15
__exit__() (pip_accel.SetupRequiresPatch method), 15
__exit__() (pip_accel.req.TransactionalUpdate method),

23
__exit__() (pip_accel.tests.CaptureOutput method), 42
__exit__() (pip_accel.utils.AtomicReplace method), 34
__getattr__() (pip_accel.AttributeOverrides method), 16
__init__() (pip_accel.AttributeOverrides method), 16
__init__() (pip_accel.PatchedAttribute method), 15
__init__() (pip_accel.PipAccelerator method), 10
__init__() (pip_accel.SetupRequiresPatch method), 15
__init__() (pip_accel.bdist.BinaryDistributionManager

method), 24
__init__() (pip_accel.caches.AbstractCacheBackend

method), 27
__init__() (pip_accel.caches.CacheBackendMeta

method), 26
__init__() (pip_accel.caches.CacheManager method), 27
__init__() (pip_accel.caches.s3.PatchedBotoConfig

method), 30
__init__() (pip_accel.config.Config method), 18
__init__() (pip_accel.deps.SystemPackageManager

method), 31
__init__() (pip_accel.exceptions.PipAcceleratorError

method), 35
__init__() (pip_accel.req.Requirement method), 21
__init__() (pip_accel.req.TransactionalUpdate method),

23
__init__() (pip_accel.tests.AptLock method), 42
__init__() (pip_accel.tests.CaptureOutput method), 42
__init__() (pip_accel.tests.FakeS3Server method), 42

__init__() (pip_accel.utils.AtomicReplace method), 33
__repr__() (pip_accel.caches.AbstractCacheBackend

method), 27
__repr__() (pip_accel.req.Requirement method), 22
__setattr__() (pip_accel.AttributeOverrides method), 16
__setattr__() (pip_accel.config.Config method), 18
__str__() (pip_accel.req.Requirement method), 23
__str__() (pip_accel.tests.CaptureOutput method), 42

A
AbstractCacheBackend (class in pip_accel.caches), 26
AptLock (class in pip_accel.tests), 42
arguments_allow_wheels() (pip_accel.PipAccelerator

method), 14
AtomicReplace (class in pip_accel.utils), 33
AttributeOverrides (class in pip_accel), 15
auto_install (pip_accel.config.Config attribute), 19
available_configuration_files (pip_accel.config.Config at-

tribute), 18

B
binary_cache (pip_accel.config.Config attribute), 19
BinaryDistributionError, 36
BinaryDistributionManager (class in pip_accel.bdist), 24
build_binary_dist() (pip_accel.bdist.BinaryDistributionManager

method), 24
build_binary_dist_helper()

(pip_accel.bdist.BinaryDistributionManager
method), 25

build_directory (pip_accel.PipAccelerator attribute), 14
BuildFailed, 36

C
cache_format_revision (pip_accel.config.Config at-

tribute), 18
CacheBackendDisabledError, 36
CacheBackendError, 36
CacheBackendMeta (class in pip_accel.caches), 26
CacheManager (class in pip_accel.caches), 27
CaptureOutput (class in pip_accel.tests), 42

45

pip-accel, Release 0.43

check_cache_invalidation()
(pip_accel.tests.PipAccelTestCase method), 40

check_prerequisites() (pip_accel.caches.s3.S3CacheBackend
method), 30

checksum (pip_accel.req.Requirement attribute), 22
clean_source_index() (pip_accel.PipAccelerator method),

11
cleanup_temporary_directories()

(pip_accel.PipAccelerator method), 14
clear_build_directory() (pip_accel.PipAccelerator

method), 14
client_options (pip_accel.tests.FakeS3Server attribute),

42
compact() (in module pip_accel.utils), 32
Config (class in pip_accel.config), 18
confirm_installation() (pip_accel.deps.SystemPackageManager

method), 31
contains_sublist() (in module pip_accel.utils), 34
create_build_directory() (pip_accel.PipAccelerator

method), 14
create_file_url() (in module pip_accel.utils), 32
create_source_dist() (in module pip_accel.tests), 40
create_temporary_directory() (in module pip_accel.tests),

37
CustomPackageFinder (class in pip_accel), 15

D
data_directory (pip_accel.config.Config attribute), 19
decorate_arguments() (pip_accel.PipAccelerator

method), 12
delete_read_only() (in module pip_accel.tests), 37
dependency_links (pip_accel.CustomPackageFinder at-

tribute), 15
DependencyInstallationFailed, 36
DependencyInstallationRefused, 36
download_source_dists() (pip_accel.PipAccelerator

method), 13
DownloadLogFilter (class in pip_accel), 14

E
eggs_cache (pip_accel.config.Config attribute), 19
EnvironmentMismatchError, 36
escape_name() (in module pip_accel.req), 23
escape_name_callback() (in module pip_accel.req), 23
expand_path() (in module pip_accel.utils), 32

F
FakeS3Server (class in pip_accel.tests), 42
filter() (pip_accel.DownloadLogFilter method), 14
find_files() (in module pip_accel.tests), 41
find_home_directory() (in module pip_accel.utils), 32
find_installed_packages()

(pip_accel.deps.SystemPackageManager
method), 31

find_installed_version() (in module pip_accel.tests), 41
find_known_dependencies()

(pip_accel.deps.SystemPackageManager
method), 31

find_missing_dependencies()
(pip_accel.deps.SystemPackageManager
method), 31

find_one_file() (in module pip_accel.tests), 41
find_python_program() (in module pip_accel.tests), 41
fix_hashbang() (pip_accel.bdist.BinaryDistributionManager

method), 26

G
generate_filename() (pip_accel.caches.CacheManager

method), 28
generate_nonexisting_pathname() (in module

pip_accel.tests), 41
generate_package() (pip_accel.tests.PipAccelTestCase

method), 39
get() (pip_accel.caches.AbstractCacheBackend method),

27
get() (pip_accel.caches.CacheManager method), 27
get() (pip_accel.caches.local.LocalCacheBackend

method), 28
get() (pip_accel.caches.s3.PatchedBotoConfig method),

30
get() (pip_accel.caches.s3.S3CacheBackend method), 29
get() (pip_accel.config.Config method), 18
get_binary_dist() (pip_accel.bdist.BinaryDistributionManager

method), 24
get_cache_key() (pip_accel.caches.s3.S3CacheBackend

method), 30
get_pip_requirement_set() (pip_accel.PipAccelerator

method), 13
get_python_version() (in module pip_accel.utils), 32
get_requirements() (pip_accel.PipAccelerator method),

12

H
hash_files() (in module pip_accel.utils), 33

I
index_urls (pip_accel.CustomPackageFinder attribute),

15
initialize_directories() (pip_accel.PipAccelerator

method), 11
initialize_pip_accel() (pip_accel.tests.PipAccelTestCase

method), 37
install_binary_dist() (pip_accel.bdist.BinaryDistributionManager

method), 25
install_dependencies() (pip_accel.deps.SystemPackageManager

method), 31
install_from_arguments() (pip_accel.PipAccelerator

method), 11

46 Index

pip-accel, Release 0.43

install_prefix (pip_accel.config.Config attribute), 19
install_requirements() (pip_accel.PipAccelerator

method), 13
installation_refused() (pip_accel.deps.SystemPackageManager

method), 31
InvalidSourceDistribution, 36
is_direct (pip_accel.req.Requirement attribute), 23
is_editable (pip_accel.req.Requirement attribute), 23
is_installed() (in module pip_accel.utils), 34
is_root() (in module pip_accel.utils), 32
is_short_option() (in module pip_accel.utils), 34
is_transitive (pip_accel.req.Requirement attribute), 23
is_wheel (pip_accel.req.Requirement attribute), 22

L
last_modified (pip_accel.req.Requirement attribute), 22
load_configuration_file() (pip_accel.config.Config

method), 18
LocalCacheBackend (class in pip_accel.caches.local), 28
log_format (pip_accel.config.Config attribute), 19
log_verbosity (pip_accel.config.Config attribute), 19

M
makedirs() (in module pip_accel.utils), 33
match_option() (in module pip_accel.utils), 34
match_option_with_value() (in module pip_accel.utils),

34
max_retries (pip_accel.config.Config attribute), 20

N
name (pip_accel.req.Requirement attribute), 22
needs_invalidation() (pip_accel.bdist.BinaryDistributionManager

method), 24
NoBuildOutput, 36
NothingToDoError, 36

O
on_debian (pip_accel.config.Config attribute), 19

P
PatchedAttribute (class in pip_accel), 15
PatchedBotoConfig (class in pip_accel.caches.s3), 30
persist_checksum() (pip_accel.bdist.BinaryDistributionManager

method), 24
pip_accel (module), 10
pip_accel.bdist (module), 23
pip_accel.caches (module), 26
pip_accel.caches.local (module), 28
pip_accel.caches.s3 (module), 28
pip_accel.config (module), 16
pip_accel.deps (module), 30
pip_accel.exceptions (module), 35
pip_accel.req (module), 21

pip_accel.tests (module), 37
pip_accel.utils (module), 32
PipAccelerator (class in pip_accel), 10
PipAcceleratorError, 35
PipAccelTestCase (class in pip_accel.tests), 37
put() (pip_accel.caches.AbstractCacheBackend method),

27
put() (pip_accel.caches.CacheManager method), 27
put() (pip_accel.caches.local.LocalCacheBackend

method), 28
put() (pip_accel.caches.s3.S3CacheBackend method), 29
pycodestyle_git_repo (pip_accel.tests.PipAccelTestCase

attribute), 40
python_executable (pip_accel.config.Config attribute), 19

R
recall_checksum() (pip_accel.bdist.BinaryDistributionManager

method), 24
related_archives (pip_accel.req.Requirement attribute),

22
replace_file() (in module pip_accel.utils), 33
Requirement (class in pip_accel.req), 21
requirement_is_installed() (in module pip_accel.utils), 34
root (pip_accel.tests.FakeS3Server attribute), 42

S
s3_bucket (pip_accel.caches.s3.S3CacheBackend at-

tribute), 30
s3_cache_bucket (pip_accel.config.Config attribute), 20
s3_cache_create_bucket (pip_accel.config.Config at-

tribute), 20
s3_cache_prefix (pip_accel.config.Config attribute), 20
s3_cache_readonly (pip_accel.config.Config attribute),

21
s3_cache_retries (pip_accel.config.Config attribute), 21
s3_cache_timeout (pip_accel.config.Config attribute), 21
s3_cache_url (pip_accel.config.Config attribute), 20
s3_connection (pip_accel.caches.s3.S3CacheBackend at-

tribute), 30
S3CacheBackend (class in pip_accel.caches.s3), 29
same_directories() (in module pip_accel.utils), 33
sdist_metadata (pip_accel.req.Requirement attribute), 23
setUp() (pip_accel.tests.PipAccelTestCase method), 37
setUpModule() (in module pip_accel.tests), 37
SetupRequiresPatch (class in pip_accel), 14
setuptools_supports_wheels() (pip_accel.PipAccelerator

method), 12
skipTest() (pip_accel.tests.PipAccelTestCase method), 37
source_directory (pip_accel.req.Requirement attribute),

22
source_index (pip_accel.config.Config attribute), 18
SystemDependencyError, 36
SystemPackageManager (class in pip_accel.deps), 31

Index 47

pip-accel, Release 0.43

T
tearDownModule() (in module pip_accel.tests), 37
test_bdist_fallback() (pip_accel.tests.PipAccelTestCase

method), 38
test_checksum_based_cache_invalidation()

(pip_accel.tests.PipAccelTestCase method), 39
test_cleanup_of_broken_links()

(pip_accel.tests.PipAccelTestCase method), 38
test_cli() (in module pip_accel.tests), 42
test_cli_as_module() (pip_accel.tests.PipAccelTestCase

method), 40
test_cli_install() (pip_accel.tests.PipAccelTestCase

method), 40
test_cli_usage_message()

(pip_accel.tests.PipAccelTestCase method), 40
test_config_file_handling()

(pip_accel.tests.PipAccelTestCase method), 38
test_config_object_handling()

(pip_accel.tests.PipAccelTestCase method), 38
test_constraint_file_support()

(pip_accel.tests.PipAccelTestCase method), 40
test_editable_install() (pip_accel.tests.PipAccelTestCase

method), 39
test_empty_download_cache()

(pip_accel.tests.PipAccelTestCase method), 38
test_empty_requirements_file()

(pip_accel.tests.PipAccelTestCase method), 40
test_environment_validation()

(pip_accel.tests.PipAccelTestCase method), 38
test_installed_files_tracking()

(pip_accel.tests.PipAccelTestCase method), 39
test_package_downgrade()

(pip_accel.tests.PipAccelTestCase method), 38
test_package_upgrade() (pip_accel.tests.PipAccelTestCase

method), 38
test_related_archives_logic()

(pip_accel.tests.PipAccelTestCase method), 37
test_requirement_objects()

(pip_accel.tests.PipAccelTestCase method), 39
test_s3_backend() (pip_accel.tests.PipAccelTestCase

method), 38
test_setup_requires_caching()

(pip_accel.tests.PipAccelTestCase method), 39
test_setuptools_injection()

(pip_accel.tests.PipAccelTestCase method), 39
test_system_package_dependency_failures()

(pip_accel.tests.PipAccelTestCase method), 40
test_system_package_dependency_installation()

(pip_accel.tests.PipAccelTestCase method), 40
test_time_based_cache_invalidation()

(pip_accel.tests.PipAccelTestCase method), 39
test_wheel_install() (pip_accel.tests.PipAccelTestCase

method), 38
TransactionalUpdate (class in pip_accel.req), 23

transform_binary_dist() (pip_accel.bdist.BinaryDistributionManager
method), 25

transform_pip_requirement_set()
(pip_accel.PipAccelerator method), 13

trust_mod_times (pip_accel.config.Config attribute), 20
try_program() (in module pip_accel.tests), 41

U
uninstall() (in module pip_accel.utils), 34
uninstall_through_subprocess() (in module

pip_accel.tests), 41
UnknownDistributionFormat, 36
unpack_source_dists() (pip_accel.PipAccelerator

method), 12
update_installed_files() (pip_accel.bdist.BinaryDistributionManager

method), 26

V
validate_environment() (pip_accel.PipAccelerator

method), 11
version (pip_accel.req.Requirement attribute), 22

W
wheel_metadata (pip_accel.req.Requirement attribute),

23
wipe_directory() (in module pip_accel.tests), 40

48 Index

	Introduction & usage
	pip-accel: Accelerator for pip, the Python package manager

	Internal API documentation
	Documentation for the pip accelerator API

	Python Module Index

