

Documentation for the pip accelerator

The pip accelerator makes pip [http://www.pip-installer.org/] (the Python
package manager) faster by keeping pip off the internet when possible and by
caching compiled binary distributions. It can bring a 10 minute run of pip
down to less than a minute. You can find the pip accelerator in the following
places:

	The source code lives on GitHub [https://github.com/paylogic/pip-accel]

	Downloads are available in the Python Package Index [https://pypi.python.org/pypi/pip-accel]

	Online documentation is hosted by Read The Docs [https://pip-accel.readthedocs.org/]

This is the documentation for version 0.43 of the pip accelerator. The
documentation consists of two parts:

	The documentation for users of the pip-accel command

	The documentation for developers who wish to extend and/or embed the
functionality of pip-accel

Introduction & usage

The first part of the documentation is the readme which is targeted at users of
the pip-accel command. Here are the topics discussed in the readme:

	pip-accel: Accelerator for pip, the Python package manager
	Status

	Usage

	How fast is it?

	Alternative cache backends

	Caching of setup requirements

	Dependencies on system packages

	Integrating with tox

	Control flow of pip-accel

	Contact

	License

Internal API documentation

The second part of the documentation is targeted at developers who wish to
extend and/or embed the functionality of pip-accel. Here are the contents
of the API documentation:

	Documentation for the pip accelerator API
	A note about backwards compatibility

	The Python API of pip-accel
	pip_accel

	pip_accel.config

	pip_accel.req

	pip_accel.bdist

	pip_accel.caches

	pip_accel.caches.local

	pip_accel.caches.s3

	pip_accel.deps

	pip_accel.utils

	pip_accel.exceptions

	pip_accel.tests

pip-accel: Accelerator for pip, the Python package manager

[image: https://travis-ci.org/paylogic/pip-accel.svg?branch=master]
 [https://travis-ci.org/paylogic/pip-accel][image: https://coveralls.io/repos/paylogic/pip-accel/badge.svg?branch=master]
 [https://coveralls.io/r/paylogic/pip-accel?branch=master]The pip-accel program is a wrapper for pip [http://www.pip-installer.org/], the Python package manager. It
accelerates the usage of pip to initialize Python virtual environments [http://www.virtualenv.org/] given
one or more requirements files [http://www.pip-installer.org/en/latest/cookbook.html#requirements-files]. It does so by combining the following two
approaches:

	Source distribution downloads are cached and used to generate a local index
of source distribution archives [http://www.pip-installer.org/en/latest/cookbook.html#fast-local-installs]. If all your dependencies are pinned to
absolute versions whose source distribution downloads were previously
cached, pip-accel won’t need a network connection at all! This is one of the
reasons why pip can be so slow: given absolute pinned dependencies available
in the download cache it will still scan PyPI [http://pypi.python.org/] and distribution websites.

	Binary distributions [http://docs.python.org/2/distutils/builtdist.html] are used to speed up the process of installing
dependencies with binary components (like M2Crypto [https://pypi.python.org/pypi/M2Crypto] and LXML [https://pypi.python.org/pypi/lxml]). Instead of
recompiling these dependencies again for every virtual environment we
compile them once and cache the result as a binary *.tar.gz
distribution.

In addition, since version 0.9 pip-accel contains a simple mechanism that
detects missing system packages when a build fails and prompts the user whether
to install the missing dependencies and retry the build.

The pip-accel program is currently tested on cPython 2.6, 2.7, 3.4 and 3.5 and
PyPy (2.7). The automated test suite regularly runs on Ubuntu Linux (Travis
CI [https://travis-ci.org/paylogic/pip-accel]) as well as Microsoft Windows (AppVeyor [https://ci.appveyor.com/project/xolox/pip-accel]). In addition to these platforms
pip-accel should work fine on most UNIX systems (e.g. Mac OS X).

Contents

	pip-accel: Accelerator for pip, the Python package manager
	Status

	Usage
	Configuration

	How fast is it?

	Alternative cache backends
	Storing the binary cache on Amazon S3
	Using S3 compatible storage services

	Caching of setup requirements

	Dependencies on system packages

	Integrating with tox

	Control flow of pip-accel

	Contact

	License

Status

Paylogic [http://www.paylogic.com/] uses pip-accel to quickly and reliably initialize virtual
environments on its farm of continuous integration slaves which are constantly
running unit tests (this was one of the original use cases for which pip-accel
was developed). We also use it on our build servers.

When pip-accel was originally developed PyPI [http://pypi.python.org/] was sometimes very unreliable
(PyPI wasn’t behind a CDN [http://mail.python.org/pipermail/distutils-sig/2013-May/020848.html] back then). Because of the CDN, PyPI is much more
reliable nowadays however pip-accel still has its place:

	The CDN doesn’t help for distribution sites, which are as unreliably as they
have always been.

	By using pip-accel you can make Python deployments completely independent
from internet connectivity.

	Because pip-accel caches compiled binary packages it can still provide a nice
speed boost over using plain pip.

Usage

The pip-accel command supports all subcommands and options supported by pip,
however it is of course only useful for the pip install subcommand. So for
example:

$ pip-accel install -r requirements.txt

Alternatively you can also run pip-accel as follows, but note that this
requires Python 2.7 or higher (it specifically doesn’t work on Python 2.6):

$ python -m pip_accel install -r requirements.txt

If you pass a -v or --verbose option then pip and pip-accel will both
use verbose output. The -q or --quiet option is also supported.

Based on the user running pip-accel the following file locations are used by
default:

	Root user
	All other users
	Purpose

	/var/cache/pip-accel
	~/.pip-accel
	Used to store the source/binary indexes

This default can be overridden by defining the environment variable
PIP_ACCEL_CACHE.

Configuration

For most users the default configuration of pip-accel should be fine. If you do
want to change pip-accel’s defaults you do so by setting environment variables
and/or adding configuration options to a configuration file. This is because
pip-accel shares its command line interface with pip and adding support for
command line options specific to pip-accel is non trivial and may end up
causing more confusion than it’s worth :-). For an overview of the available
configuration options and corresponding environment variables please refer to
the documentation of the pip_accel.config module [http://pip-accel.readthedocs.org/en/latest/developers.html#module-pip_accel.config].

How fast is it?

To give you an idea of how effective pip-accel is, below are the results of a
test to build a virtual environment for one of the internal code bases of
Paylogic [http://www.paylogic.com/]. This code base requires more than 40 dependencies including several
packages that need compilation with SWIG and a C compiler:

	Program
	Description
	Duration
	Percentage

	pip
	Default configuration
	444 seconds
	100% (baseline)

	pip
	With download cache (first run)
	416 seconds
	94%

	pip
	With download cache (second run)
	318 seconds
	72%

	pip-accel
	First run
	397 seconds
	89%

	pip-accel
	Second run
	30 seconds
	7%

Alternative cache backends

Bundled with pip-accel are a local cache backend (which stores distribution
archives on the local file system) and an Amazon S3 [http://aws.amazon.com/s3/] backend (see below).

Both of these cache backends are registered with pip-accel using a generic
pluggable cache backend registration mechanism. This mechanism makes it
possible to register additional cache backends without modifying pip-accel. If
you are interested in the details please refer to pip-accel’s setup.py
script and the two simple Python modules that define the bundled backends.

If you’ve written a cache backend that you think may be valuable to others,
please feel free to open an issue or pull request on GitHub in order to get
your backend bundled with pip-accel.

Storing the binary cache on Amazon S3

You can configure pip-accel to store its binary cache files in an Amazon S3 [http://aws.amazon.com/s3/]
bucket. In this case Amazon S3 is treated as a second level cache, only used if
the local file system cache can’t satisfy a dependency. If the dependency is
not found in the Amazon S3 bucket, the package is built and cached locally (as
usual) but then also saved to the Amazon S3 bucket. This functionality can be
useful for continuous integration build worker boxes that are ephemeral and
don’t have persistent local storage to store the pip-accel binary cache.

To get started you need to install pip-accel as follows:

$ pip install 'pip-accel[s3]'

The [s3] part enables the Amazon S3 cache backend by installing the Boto [https://github.com/boto/boto]
package. Once installed you can use the following environment variables to
configure the Amazon S3 cache backend:

	$PIP_ACCEL_S3_BUCKET

	The name of the Amazon S3 bucket in which binary distribution archives should
be cached. This environment variable is required to enable the Amazon S3 cache
backend.

	$PIP_ACCEL_S3_PREFIX

	The optional prefix to apply to all Amazon S3 keys. This enables name spacing
based on the environment in which pip-accel is running (to isolate the binary
caches of ABI incompatible systems). The user is currently responsible for
choosing a suitable prefix.

	$PIP_ACCEL_S3_READONLY

	If this option is set pip-accel will skip uploading to the Amazon S3 bucket.
This means pip-accel will use the configured Amazon S3 bucket to “warm up”
your local cache but it will never write to the bucket, so you can use read
only credentials. Of course you will need to run at least one instance of
pip-accel that does have write permissions, so this setup is best suited to
teams working around e.g. a continuous integration (CI) server, where the CI
server primes the cache and developers use the cache in read only mode.

You can also set these options from a configuration file, please refer to the
documentation of the pip_accel.config module [http://pip-accel.readthedocs.org/en/latest/developers.html#module-pip_accel.config]. You will also need to set AWS
credentials, either in a .boto file [http://boto.readthedocs.org/en/latest/boto_config_tut.html] or in the $AWS_ACCESS_KEY_ID and
$AWS_SECRET_ACCESS_KEY environment variables (refer to the Boto
documentation for details).

Using S3 compatible storage services

If you want to point pip-accel at an S3 compatible storage service [http://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services] that is
not Amazon S3 you can override the S3 API URL [http://pip-accel.readthedocs.org/en/latest/developers.html#pip_accel.config.Config.s3_cache_url] using a configuration option
or environment variable. For example the pip-accel test suite first installs
and starts FakeS3 [https://github.com/jubos/fake-s3] and then sets PIP_ACCEL_S3_URL=http://localhost:12345 to
point pip-accel at the FakeS3 server (in order to test the Amazon S3 cache
backend without actually having to pay for an Amazon S3 bucket :-). For more
details please refer to the documentation of the Amazon S3 cache backend [http://pip-accel.readthedocs.org/en/latest/developers.html#module-pip_accel.caches.s3].

Caching of setup requirements

Since version 0.38 pip-accel instructs setuptools to cache setup requirements
in a subdirectory of pip-accel’s data directory (see the eggs_cache [http://pip-accel.readthedocs.org/en/latest/developers.html#pip_accel.config.Config.binary_cache] option) to
avoid recompilation of setup requirements. This works by injecting a symbolic
link called .eggs into unpacked source distribution directories before pip
or pip-accel runs the setup script.

The use of the .eggs directory was added in setuptools version 7.0 which is
why pip-accel now requires setuptools 7.0 or higher to be installed. This
dependency was added because the whole point of pip-accel is to work well out
of the box, shielding the user from surprising behavior like setup requirements
slowing things down and breaking offline installation.

Dependencies on system packages

Since version 0.9 pip-accel contains a simple mechanism that detects missing
system packages when a build fails and prompts the user whether to install the
missing dependencies and retry the build. Currently only Debian Linux and
derivative Linux distributions are supported, although support for other
platforms should be easy to add. This functionality currently works based on
configuration files that define dependencies of Python packages on system
packages. This means the results should be fairly reliable, but every single
dependency needs to be manually defined...

Here’s what it looks like in practice:

2013-06-16 01:01:53 wheezy-vm INFO Building binary distribution of python-mcrypt (1.1) ..
2013-06-16 01:01:53 wheezy-vm ERROR Failed to build binary distribution of python-mcrypt! (version: 1.1)
2013-06-16 01:01:53 wheezy-vm INFO Build output (will probably provide a hint as to what went wrong):

gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fPIC -DVERSION="1.1" -I/usr/include/python2.7 -c mcrypt.c -o build/temp.linux-i686-2.7/mcrypt.o
mcrypt.c:23:20: fatal error: mcrypt.h: No such file or directory
error: command 'gcc' failed with exit status 1

2013-06-16 01:01:53 wheezy-vm INFO python-mcrypt: Checking for missing dependencies ..
2013-06-16 01:01:53 wheezy-vm INFO You seem to be missing 1 dependency: libmcrypt-dev
2013-06-16 01:01:53 wheezy-vm INFO I can install it for you with this command: sudo apt-get install --yes libmcrypt-dev
Do you want me to install this dependency? [y/N] y
2013-06-16 01:02:05 wheezy-vm INFO Got permission to install missing dependency.

The following extra packages will be installed:
 libmcrypt4
Suggested packages:
 mcrypt
The following NEW packages will be installed:
 libmcrypt-dev libmcrypt4
0 upgraded, 2 newly installed, 0 to remove and 68 not upgraded.
Unpacking libmcrypt4 (from .../libmcrypt4_2.5.8-3.1_i386.deb) ...
Unpacking libmcrypt-dev (from .../libmcrypt-dev_2.5.8-3.1_i386.deb) ...
Setting up libmcrypt4 (2.5.8-3.1) ...
Setting up libmcrypt-dev (2.5.8-3.1) ...

2013-06-16 01:02:13 wheezy-vm INFO Successfully installed 1 missing dependency.
2013-06-16 01:02:13 wheezy-vm INFO Building binary distribution of python-mcrypt (1.1) ..
2013-06-16 01:02:14 wheezy-vm INFO Copying binary distribution python-mcrypt-1.1.linux-i686.tar.gz to cache as python-mcrypt:1.1:py2.7.tar.gz.

Integrating with tox

You can tell Tox [https://tox.readthedocs.org/] to use pip-accel using a small shell script that first uses
pip to install pip-accel, then uses pip-accel to bootstrap the virtual
environment. You can find details about this in issue #30 on GitHub [https://github.com/paylogic/pip-accel/issues/30].

Control flow of pip-accel

The way pip-accel works is not very intuitive but it is very effective. Below
is an overview of the control flow. Once you take a look at the code you’ll
notice that the steps below are all embedded in a loop that retries several
times. This is mostly because of step 2 (downloading the source
distributions).

	Run pip install --download=... --no-index -r requirements.txt to unpack
source distributions available in the local source index. This is the first
step because pip-accel should accept requirements.txt files as input but
it will manually install dependencies from cached binary distributions
(without using pip or easy_install):

	If the command succeeds it means all dependencies are already available as
downloaded source distributions. We’ll parse the verbose pip output of step
1 to find the direct and transitive dependencies (names and versions)
defined in requirements.txt and use them as input for step 3.
Go to step 3.

	If the command fails it probably means not all dependencies are available
as local source distributions yet so we should download them. Go to step 2.

	Run pip install --download=... -r requirements.txt to download missing
source distributions to the download cache:

	If the command fails it means that pip encountered errors while scanning
PyPI [http://pypi.python.org/], scanning a distribution website, downloading a source distribution
or unpacking a source distribution. Usually these kinds of errors are
intermittent so retrying a few times is worth a shot. Go to step 2.

	If the command succeeds it means all dependencies are now available as
local source distributions; we don’t need the network anymore! Go to step 1.

	Run python setup.py bdist_dumb --format=gztar for each dependency that
doesn’t have a cached binary distribution yet (taking version numbers into
account). Go to step 4.

	Install all dependencies from binary distributions based on the list of
direct and transitive dependencies obtained in step 1. We have to do these
installations manually because easy_install nor pip support binary
*.tar.gz distributions.

Contact

If you have questions, bug reports, suggestions, etc. please create an issue on
the GitHub project page [https://github.com/paylogic/pip-accel]. The latest version of pip-accel will always be
available on GitHub. The internal API documentation is hosted on Read The
Docs [https://pip-accel.readthedocs.org/].

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License] just like pip [http://www.pip-installer.org/] (on which
pip-accel is based).

© 2016 Peter Odding and Paylogic [http://www.paylogic.com/] International.

Documentation for the pip accelerator API

On this page you can find the complete API documentation of pip-accel
0.43.

A note about backwards compatibility

Please note that pip-accel has not yet reached a 1.0 version and until that
time arbitrary changes to the API can be made. To clarify that statement:

	On the one hand I value API stability and I’ve built a dozen tools on top of
pip-accel myself so I don’t think too lightly about breaking backwards
compatibility :-)

	On the other hand if I see opportunities to simplify the code base or make
things more robust I will go ahead and do it. Furthermore the implementation
of pip-accel is dictated (to a certain extent) by pip and this certainly
influences the API. For example API changes may be necessary to facilitate
the upgrade to pip 1.5.x (the current version of pip-accel is based on pip
1.4.x).

In pip-accel 0.16 a completely new API was introduced and support for the old
“API” was dropped. The goal of the new API is to last for quite a while but of
course only time will tell if that plan is going to work out :-)

The Python API of pip-accel

Here are the relevant Python modules that make up pip-accel:

	pip_accel
	Wheel support
	Setuptools upgrade

	pip_accel.config
	Support for runtime configuration

	Support for configuration files

	pip_accel.req

	pip_accel.bdist

	pip_accel.caches

	pip_accel.caches.local

	pip_accel.caches.s3
	Using S3 compatible storage services

	A note about robustness

	pip_accel.deps

	pip_accel.utils

	pip_accel.exceptions
	Hierarchy of exceptions

	pip_accel.tests

pip_accel

Top level functionality of pip-accel.

The Python module pip_accel defines the classes that implement the
top level functionality of the pip accelerator. Instead of using the
pip-accel command you can also use the pip accelerator as a Python module,
in this case you’ll probably want to start by taking a look at
the PipAccelerator class.

Wheel support

During the upgrade to pip 6 support for installation of wheels [https://pypi.python.org/pypi/wheel] was added to
pip-accel. The pip-accel command line program now downloads and installs
wheels when available for a given requirement, but part of pip-accel’s Python
API defaults to the more conservative choice of allowing callers to opt-in to
wheel support.

This is because previous versions of pip-accel would only download source
distributions and pip-accel provides the functionality to convert those source
distributions to “dumb binary distributions”. This functionality is exposed to
callers who may depend on this mode of operation. So for now users of the
Python API get to decide whether they’re interested in wheels or not.

Setuptools upgrade

If the requirement set includes wheels and setuptools >= 0.8 is not yet
installed, it will be added to the requirement set and installed together with
the other requirement(s) in order to enable the usage of distributions
installed from wheels (their metadata is different).

	
class pip_accel.PipAccelerator(config, validate=True)

	Accelerator for pip, the Python package manager.

The PipAccelerator class brings together the top level logic of
pip-accel. This top level logic was previously just a collection of
functions but that became more unwieldy as the amount of internal state
increased. The PipAccelerator class is intended to make it
(relatively) easy to build something on top of pip and pip-accel.

	
__init__(config, validate=True)

	Initialize the pip accelerator.

	Parameters:	
	config – The pip-accel configuration (a Config
object).

	validate – True [https://docs.python.org/2/library/constants.html#True] to run validate_environment(),
False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
validate_environment()

	Make sure sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix] matches $VIRTUAL_ENV (if defined).

This may seem like a strange requirement to dictate but it avoids hairy
issues like documented here [https://github.com/paylogic/pip-accel/issues/5].

The most sneaky thing is that pip doesn’t have this problem
(de-facto) because virtualenv copies pip wherever it goes...
(pip-accel on the other hand has to be installed by the user).

	
initialize_directories()

	Automatically create local directories required by pip-accel.

	
clean_source_index()

	Cleanup broken symbolic links in the local source distribution index.

The purpose of this method requires some context to understand. Let me
preface this by stating that I realize I’m probably overcomplicating
things, but I like to preserve forward / backward compatibility when
possible and I don’t feel like dropping everyone’s locally cached
source distribution archives without a good reason to do so. With that
out of the way:

	Versions of pip-accel based on pip 1.4.x maintained a local source
distribution index based on a directory containing symbolic links
pointing directly into pip’s download cache. When files were removed
from pip’s download cache, broken symbolic links remained in
pip-accel’s local source distribution index directory. This resulted
in very confusing error messages. To avoid this
clean_source_index() cleaned up broken symbolic links
whenever pip-accel was about to invoke pip.

	More recent versions of pip (6.x) no longer support the same style of
download cache that contains source distribution archives that can be
re-used directly by pip-accel. To cope with the changes in pip 6.x
new versions of pip-accel tell pip to download source distribution
archives directly into the local source distribution index directory
maintained by pip-accel.

	It is very reasonable for users of pip-accel to have multiple
versions of pip-accel installed on their system (imagine a dozen
Python virtual environments that won’t all be updated at the same
time; this is the situation I always find myself in :-). These
versions of pip-accel will be sharing the same local source
distribution index directory.

	All of this leads up to the local source distribution index directory
containing a mixture of symbolic links and regular files with no
obvious way to atomically and gracefully upgrade the local source
distribution index directory while avoiding fights between old and
new versions of pip-accel :-).

	I could of course switch to storing the new local source distribution
index in a differently named directory (avoiding potential conflicts
between multiple versions of pip-accel) but then I would have to
introduce a new configuration option, otherwise everyone who has
configured pip-accel to store its source index in a non-default
location could still be bitten by compatibility issues.

For now I’ve decided to keep using the same directory for the local
source distribution index and to keep cleaning up broken symbolic
links. This enables cooperating between old and new versions of
pip-accel and avoids trashing user’s local source distribution indexes.
The main disadvantage is that pip-accel is still required to clean up
broken symbolic links...

	
install_from_arguments(arguments, **kw)

	Download, unpack, build and install the specified requirements.

This function is a simple wrapper for get_requirements(),
install_requirements() and cleanup_temporary_directories()
that implements the default behavior of the pip accelerator. If you’re
extending or embedding pip-accel you may want to call the underlying
methods instead.

If the requirement set includes wheels and setuptools >= 0.8 is not
yet installed, it will be added to the requirement set and installed
together with the other requirement(s) in order to enable the usage of
distributions installed from wheels (their metadata is different).

	Parameters:	
	arguments – The command line arguments to pip install .. (a
list of strings).

	kw – Any keyword arguments are passed on to
install_requirements().

	Returns:	The result of install_requirements().

	
setuptools_supports_wheels()

	Check whether setuptools should be upgraded to >= 0.8 for wheel support.

	Returns:	True [https://docs.python.org/2/library/constants.html#True] when setuptools 0.8 or higher is already
installed, False [https://docs.python.org/2/library/constants.html#False] otherwise (it needs to be upgraded).

	
get_requirements(arguments, max_retries=None, use_wheels=False)

	Use pip to download and unpack the requested source distribution archives.

	Parameters:	
	arguments – The command line arguments to pip install ... (a
list of strings).

	max_retries – The maximum number of times that pip will be asked
to download distribution archives (this helps to
deal with intermittent failures). If this is
None [https://docs.python.org/2/library/constants.html#None] then max_retries is
used.

	use_wheels – Whether pip and pip-accel are allowed to use wheels [https://pypi.python.org/pypi/wheel]
(False [https://docs.python.org/2/library/constants.html#False] by default for backwards compatibility
with callers that use pip-accel as a Python API).

Warning

Requirements which are already installed are not included
in the result. If this breaks your use case consider using
pip’s --ignore-installed option.

	
decorate_arguments(arguments)

	Change pathnames of local files into file:// URLs with #md5=... fragments.

	Parameters:	arguments – The command line arguments to pip install ... (a
list of strings).

	Returns:	A copy of the command line arguments with pathnames of local
files rewritten to file:// URLs.

When pip-accel calls pip to download missing distribution archives and
the user specified the pathname of a local distribution archive on the
command line, pip will (by default) not copy the archive into the
download directory if an archive for the same package name and
version is already present.

This can lead to the confusing situation where the user specifies a
local distribution archive to install, a different (older) archive for
the same package and version is present in the download directory and
pip-accel installs the older archive instead of the newer archive.

To avoid this confusing behavior, the decorate_arguments()
method rewrites the command line arguments given to pip install so
that pathnames of local archives are changed into file:// URLs that
include a fragment with the hash of the file’s contents. Here’s an
example:

	Local pathname: /tmp/pep8-1.6.3a0.tar.gz

	File URL: file:///tmp/pep8-1.6.3a0.tar.gz#md5=19cbf0b633498ead63fb3c66e5f1caf6

When pip fills the download directory and encounters a previously
cached distribution archive it will check the hash, realize the
contents have changed and replace the archive in the download
directory.

	
unpack_source_dists(arguments, use_wheels=False)

	Find and unpack local source distributions and discover their metadata.

	Parameters:	
	arguments – The command line arguments to pip install ... (a
list of strings).

	use_wheels – Whether pip and pip-accel are allowed to use wheels [https://pypi.python.org/pypi/wheel]
(False [https://docs.python.org/2/library/constants.html#False] by default for backwards compatibility
with callers that use pip-accel as a Python API).

	Returns:	A list of pip_accel.req.Requirement objects.

	Raises:	Any exceptions raised by pip, for example
pip.exceptions.DistributionNotFound when not all
requirements can be satisfied.

This function checks whether there are local source distributions
available for all requirements, unpacks the source distribution
archives and finds the names and versions of the requirements. By using
the pip install --download command we avoid reimplementing the
following pip features:

	Parsing of requirements.txt (including recursive parsing).

	Resolution of possibly conflicting pinned requirements.

	Unpacking source distributions in multiple formats.

	Finding the name & version of a given source distribution.

	
download_source_dists(arguments, use_wheels=False)

	Download missing source distributions.

	Parameters:	
	arguments – The command line arguments to pip install ... (a
list of strings).

	use_wheels – Whether pip and pip-accel are allowed to use wheels [https://pypi.python.org/pypi/wheel]
(False [https://docs.python.org/2/library/constants.html#False] by default for backwards compatibility
with callers that use pip-accel as a Python API).

	Raises:	Any exceptions raised by pip.

	
get_pip_requirement_set(arguments, use_remote_index, use_wheels=False)

	Get the unpacked requirement(s) specified by the caller by running pip.

	Parameters:	
	arguments – The command line arguments to pip install ... (a
list of strings).

	use_remote_index – A boolean indicating whether pip is allowed to
connect to the main package index
(http://pypi.python.org by default).

	use_wheels – Whether pip and pip-accel are allowed to use wheels [https://pypi.python.org/pypi/wheel]
(False [https://docs.python.org/2/library/constants.html#False] by default for backwards compatibility
with callers that use pip-accel as a Python API).

	Returns:	A pip.req.RequirementSet object created by pip.

	Raises:	Any exceptions raised by pip.

	
transform_pip_requirement_set(requirement_set)

	Transform pip’s requirement set into one that pip-accel can work with.

	Parameters:	requirement_set – The pip.req.RequirementSet object
reported by pip.

	Returns:	A list of pip_accel.req.Requirement objects.

This function converts the pip.req.RequirementSet object
reported by pip into a list of pip_accel.req.Requirement
objects.

	
install_requirements(requirements, **kw)

	Manually install a requirement set from binary and/or wheel distributions.

	Parameters:	
	requirements – A list of pip_accel.req.Requirement objects.

	kw – Any keyword arguments are passed on to
install_binary_dist().

	Returns:	The number of packages that were just installed (an integer).

	
arguments_allow_wheels(arguments)

	Check whether the given command line arguments allow the use of wheels.

	Parameters:	arguments – A list of strings with command line arguments.

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if the arguments allow wheels, False [https://docs.python.org/2/library/constants.html#False] if
they disallow wheels.

Contrary to what the name of this method implies its implementation
actually checks if the user hasn’t disallowed the use of wheels using
the --no-use-wheel option (deprecated in pip 7.x) or the
--no-binary=:all: option (introduced in pip 7.x). This is because
wheels are “opt out” in recent versions of pip. I just didn’t like the
method name arguments_dont_disallow_wheels ;-).

	
create_build_directory()

	Create a new build directory for pip to unpack its archives.

	
clear_build_directory()

	Clear the build directory where pip unpacks the source distribution archives.

	
cleanup_temporary_directories()

	Delete the build directories and any temporary directories created by pip.

	
build_directory

	Get the pathname of the current build directory (a string).

	
class pip_accel.DownloadLogFilter(name='')

	Rewrite log messages emitted by pip’s pip.download module.

When pip encounters hash mismatches it logs a message with the severity
CRITICAL, however because of the interaction between
pip-accel and pip hash mismatches are to be expected and handled gracefully
(refer to decorate_arguments() for details). The
DownloadLogFilter context manager changes the severity of these
log messages to DEBUG in order to avoid confusing users of
pip-accel.

	
__enter__()

	Enable the download log filter.

	
__exit__(exc_type=None, exc_value=None, traceback=None)

	Disable the download log filter.

	
filter(record)

	Change the severity of selected log records.

	
class pip_accel.SetupRequiresPatch(config, created_links=None)

	Monkey patch to enable caching of setup requirements.

This context manager monkey patches InstallRequirement.run_egg_info()
to enable caching of setup requirements. It works by creating a symbolic
link called .eggs in the source directory of unpacked Python source
distributions which points to a shared directory inside the pip-accel
data directory. This can only work on platforms that support
os.symlink()`() but should fail gracefully elsewhere.

The SetupRequiresPatch context manager doesn’t clean up the
symbolic links because doing so would remove the link when it is still
being used. Instead the context manager builds up a list of created links
so that pip-accel can clean these up when it is known that the symbolic
links are no longer needed.

For more information about this hack please refer to issue 49 [https://github.com/paylogic/pip-accel/issues/49].

	
__init__(config, created_links=None)

	Initialize a SetupRequiresPatch object.

	Parameters:	
	config – A Config object.

	created_links – A list where newly created symbolic links are
added to (so they can be cleaned up later).

	
__enter__()

	Enable caching of setup requirements (by patching the run_egg_info() method).

	
__exit__(exc_type=None, exc_value=None, traceback=None)

	Undo the changes that enable caching of setup requirements.

	
class pip_accel.CustomPackageFinder(find_links, index_urls, allow_all_prereleases=False, trusted_hosts=None, process_dependency_links=False, session=None, format_control=None, platform=None, versions=None, abi=None, implementation=None)

	Custom pip.index.PackageFinder to keep pip off the internet.

This class customizes pip.index.PackageFinder to enforce what
the --no-index option does for the default package index but doesn’t do
for package indexes registered with the --index= option in requirements
files. Judging by pip’s documentation the fact that this has to be monkey
patched seems like a bug / oversight in pip (IMHO).

	
index_urls

	Dummy list of index URLs that is always empty.

	
dependency_links

	Dummy list of dependency links that is always empty.

	
class pip_accel.PatchedAttribute(object, attribute, value, enabled=True)

	Context manager to temporarily patch an object attribute.

This context manager changes the value of an object attribute when the
context is entered and restores the original value when the context is
exited.

	
__init__(object, attribute, value, enabled=True)

	Initialize a PatchedAttribute object.

	Parameters:	
	object – The object whose attribute should be patched.

	attribute – The name of the attribute to be patched (a string).

	value – The temporary value for the attribute.

	enabled – True [https://docs.python.org/2/library/constants.html#True] to patch the attribute, False [https://docs.python.org/2/library/constants.html#False] to
do nothing instead. This enables conditional attribute
patching while unconditionally using the
with [https://docs.python.org/2/reference/compound_stmts.html#with] statement.

	
__enter__()

	Change the object attribute when entering the context.

	
__exit__(exc_type=None, exc_value=None, traceback=None)

	Restore the object attribute when leaving the context.

	
class pip_accel.AttributeOverrides(opts, **overrides)

	AttributeOverrides enables overriding of object attributes.

During the pip 6.x upgrade pip-accel switched to using pip install
--download which unintentionally broke backwards compatibility with
previous versions of pip-accel as documented in issue 52 [https://github.com/paylogic/pip-accel/issues/52].

The reason for this is that when pip is given the --download option it
internally enables --ignore-installed (which can be problematic for
certain use cases as described in issue 52 [https://github.com/paylogic/pip-accel/issues/52]). There is no documented way
to avoid this behavior, so instead pip-accel resorts to monkey patching to
restore backwards compatibility.

AttributeOverrides is used to replace pip’s parsed command line
options object with an object that defers all attribute access (gets and
sets) to the original options object but always reports
ignore_installed as False [https://docs.python.org/2/library/constants.html#False], even after it was set to True [https://docs.python.org/2/library/constants.html#True] by pip
(as described above).

	
__init__(opts, **overrides)

	Construct an AttributeOverrides instance.

	Parameters:	
	opts – The object to which attribute access is deferred.

	overrides – The attributes whose value should be overridden.

	
__getattr__(name)

	Get an attribute’s value from overrides or by deferring attribute access.

	Parameters:	name – The name of the attribute (a string).

	Returns:	The attribute’s value.

	
__setattr__(name, value)

	Set an attribute’s value (unless it has an override).

	Parameters:	
	name – The name of the attribute (a string).

	value – The new value for the attribute.

pip_accel.config

Configuration handling for pip-accel.

This module defines the Config class which is used throughout the
pip accelerator. At runtime an instance of Config is created and
passed down like this:

[image: digraph config_dependency_injection { node [fontsize=10, shape=rect] PipAccelerator -> BinaryDistributionManager BinaryDistributionManager -> CacheManager CacheManager -> LocalCacheBackend CacheManager -> S3CacheBackend BinaryDistributionManager -> SystemPackageManager }]
The PipAccelerator class receives its configuration object from
its caller. Usually this will be main() but when pip-accel is used
as a Python API the person embedding or extending pip-accel is responsible for
providing the configuration object. This is intended as a form of dependency
injection [http://en.wikipedia.org/wiki/Dependency_injection] that enables non-default configurations to be injected into
pip-accel.

Support for runtime configuration

The properties of the Config class can be set at runtime using
regular attribute assignment syntax. This overrides the default values of the
properties (whether based on environment variables, configuration files or hard
coded defaults).

Support for configuration files

You can use a configuration file to permanently configure certain options of
pip-accel. If /etc/pip-accel.conf and/or ~/.pip-accel/pip-accel.conf
exist they are automatically loaded. You can also set the environment variable
$PIP_ACCEL_CONFIG to load a configuration file in a non-default location.
If all three files exist the system wide file is loaded first, then the user
specific file is loaded and then the file set by the environment variable is
loaded (duplicate settings are overridden by the configuration file that’s
loaded last).

Here is an example of the available options:

[pip-accel]
auto-install = yes
max-retries = 3
data-directory = ~/.pip-accel
s3-bucket = my-shared-pip-accel-binary-cache
s3-prefix = ubuntu-trusty-amd64
s3-readonly = yes

Note that the configuration options shown above are just examples, they are not
meant to represent the configuration defaults.

	
class pip_accel.config.Config(load_configuration_files=True, load_environment_variables=True)

	Configuration of the pip accelerator.

	
__init__(load_configuration_files=True, load_environment_variables=True)

	Initialize the configuration of the pip accelerator.

	Parameters:	
	load_configuration_files – If this is True [https://docs.python.org/2/library/constants.html#True] (the default) then
configuration files in known locations
are automatically loaded.

	load_environment_variables – If this is True [https://docs.python.org/2/library/constants.html#True] (the default) then
environment variables are used to
initialize the configuration.

	
available_configuration_files

	A list of strings with the absolute pathnames of the available configuration files.

	
load_configuration_file(configuration_file)

	Load configuration defaults from a configuration file.

	Parameters:	configuration_file – The pathname of a configuration file (a
string).

	Raises:	Exception when the configuration file cannot be
loaded.

	
__setattr__(name, value)

	Override the value of a property at runtime.

	Parameters:	
	name – The name of the property to override (a string).

	value – The overridden value of the property.

	
get(property_name=None, environment_variable=None, configuration_option=None, default=None)

	Internal shortcut to get a configuration option’s value.

	Parameters:	
	property_name – The name of the property that users can set on
the Config class (a string).

	environment_variable – The name of the environment variable (a
string).

	configuration_option – The name of the option in the
configuration file (a string).

	default – The default value.

	Returns:	The value of the environment variable or configuration file
option or the default value.

	
cache_format_revision

	The revision of the binary distribution cache format in use (an integer).

This number is encoded in the directory name of the binary cache so
that multiple revisions can peacefully coexist. When pip-accel breaks
backwards compatibility this number is bumped so that pip-accel starts
using a new directory.

	
source_index

	The absolute pathname of pip-accel’s source index directory (a string).

This is the sources subdirectory of data_directory.

	
binary_cache

	The absolute pathname of pip-accel’s binary cache directory (a string).

This is the binaries subdirectory of data_directory.

	
eggs_cache

	The absolute pathname of pip-accel’s eggs cache directory (a string).

This is the eggs subdirectory of data_directory. It is used
to cache setup requirements which avoids continuous rebuilding of setup
requirements.

	
data_directory

	The absolute pathname of the directory where pip-accel’s data files are stored (a string).

	Environment variable: $PIP_ACCEL_CACHE

	Configuration option: data-directory

	Default: /var/cache/pip-accel if running as root, ~/.pip-accel otherwise

	
on_debian

	True [https://docs.python.org/2/library/constants.html#True] if running on a Debian derived system, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
install_prefix

	The absolute pathname of the installation prefix to use (a string).

This property is based on sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix] except that when
sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix] is /usr and we’re running on a Debian derived
system /usr/local is used instead.

The reason for this is that on Debian derived systems only apt (dpkg)
should be allowed to touch files in /usr/lib/pythonX.Y/dist-packages
and python setup.py install knows this (see the posix_local
installation scheme in /usr/lib/pythonX.Y/sysconfig.py on Debian
derived systems). Because pip-accel replaces python setup.py
install it has to replicate this logic. Inferring all of this from
the sysconfig [https://docs.python.org/2/library/sysconfig.html#module-sysconfig] module would be nice but that module wasn’t
available in Python 2.6.

	
python_executable

	The absolute pathname of the Python executable (a string).

	
auto_install

	Whether automatic installation of missing system packages is enabled.

True [https://docs.python.org/2/library/constants.html#True] if automatic installation of missing system packages is
enabled, False [https://docs.python.org/2/library/constants.html#False] if it is disabled, None [https://docs.python.org/2/library/constants.html#None] otherwise (in this case
the user will be prompted at the appropriate time).

	Environment variable: $PIP_ACCEL_AUTO_INSTALL (refer to
coerce_boolean() [http://humanfriendly.readthedocs.io/en/latest/index.html#humanfriendly.coerce_boolean] for details on how the
value of the environment variable is interpreted)

	Configuration option: auto-install (also parsed using
coerce_boolean() [http://humanfriendly.readthedocs.io/en/latest/index.html#humanfriendly.coerce_boolean])

	Default: None [https://docs.python.org/2/library/constants.html#None]

	
log_format

	The format of log messages written to the terminal.

	Environment variable: $PIP_ACCEL_LOG_FORMAT

	Configuration option: log-format

	Default: DEFAULT_LOG_FORMAT [http://coloredlogs.readthedocs.io/en/latest/index.html#coloredlogs.DEFAULT_LOG_FORMAT]

	
log_verbosity

	The verbosity of log messages written to the terminal.

	Environment variable: $PIP_ACCEL_LOG_VERBOSITY

	Configuration option: log-verbosity

	Default: ‘INFO’ (a string).

	
max_retries

	The number of times to retry pip install --download if it fails.

	Environment variable: $PIP_ACCEL_MAX_RETRIES

	Configuration option: max-retries

	Default: 3

	
trust_mod_times

	Whether to trust file modification times for cache invalidation.

	Environment variable: $PIP_ACCEL_TRUST_MOD_TIMES

	Configuration option: trust-mod-times

	
	Default: True [https://docs.python.org/2/library/constants.html#True] unless the AppVeyor [http://www.appveyor.com] continuous integration

	environment is detected (see issue 62 [https://github.com/paylogic/pip-accel/issues/62]).

	
s3_cache_url

	The URL of the Amazon S3 API endpoint to use.

By default this points to the official Amazon S3 API endpoint. You can
change this option if you’re running a local Amazon S3 compatible
storage service that you want pip-accel to use.

	Environment variable: $PIP_ACCEL_S3_URL

	Configuration option: s3-url

	Default: https://s3.amazonaws.com

For details please refer to the pip_accel.caches.s3 module.

	
s3_cache_bucket

	Name of Amazon S3 bucket where binary distributions are cached (a string or None [https://docs.python.org/2/library/constants.html#None]).

	Environment variable: $PIP_ACCEL_S3_BUCKET

	Configuration option: s3-bucket

	Default: None [https://docs.python.org/2/library/constants.html#None]

For details please refer to the pip_accel.caches.s3 module.

	
s3_cache_create_bucket

	Whether to automatically create the Amazon S3 bucket when it’s missing.

	Environment variable: $PIP_ACCEL_S3_CREATE_BUCKET

	Configuration option: s3-create-bucket

	Default: False [https://docs.python.org/2/library/constants.html#False]

For details please refer to the pip_accel.caches.s3 module.

	
s3_cache_prefix

	Cache prefix for binary distribution archives in Amazon S3 bucket (a string or None [https://docs.python.org/2/library/constants.html#None]).

	Environment variable: $PIP_ACCEL_S3_PREFIX

	Configuration option: s3-prefix

	Default: None [https://docs.python.org/2/library/constants.html#None]

For details please refer to the pip_accel.caches.s3 module.

	
s3_cache_readonly

	Whether the Amazon S3 bucket is considered read only.

If this is True [https://docs.python.org/2/library/constants.html#True] then the Amazon S3 bucket will only be used for
get() operations (all
put() operations will
be disabled).

	Environment variable: $PIP_ACCEL_S3_READONLY (refer to
coerce_boolean() [http://humanfriendly.readthedocs.io/en/latest/index.html#humanfriendly.coerce_boolean] for details on how the
value of the environment variable is interpreted)

	Configuration option: s3-readonly (also parsed using
coerce_boolean() [http://humanfriendly.readthedocs.io/en/latest/index.html#humanfriendly.coerce_boolean])

	Default: False [https://docs.python.org/2/library/constants.html#False]

For details please refer to the pip_accel.caches.s3 module.

	
s3_cache_timeout

	The socket timeout in seconds for connections to Amazon S3 (an integer).

This value is injected into Boto’s configuration to override the
default socket timeout used for connections to Amazon S3.

	Environment variable: $PIP_ACCEL_S3_TIMEOUT

	Configuration option: s3-timeout

	Default: 60 (Boto’s default [http://boto.readthedocs.org/en/latest/boto_config_tut.html])

	
s3_cache_retries

	The number of times to retry failed requests to Amazon S3 (an integer).

This value is injected into Boto’s configuration to override the
default number of times to retry failed requests to Amazon S3.

	Environment variable: $PIP_ACCEL_S3_RETRIES

	Configuration option: s3-retries

	Default: 5 (Boto’s default [http://boto.readthedocs.org/en/latest/boto_config_tut.html])

pip_accel.req

Simple wrapper for pip and pkg_resources Requirement objects.

After downloading the specified requirement(s) pip reports a “requirement set”
to pip-accel. In the past pip-accel would summarize this requirement set into a
list of tuples, where each tuple would contain a requirement’s project name,
version and source directory (basically only the information required by
pip-accel remained).

Recently I’ve started using pip-accel as a library in another project I’m
working on (not yet public) and in that project I am very interested in whether
a given requirement is a direct or transitive requirement. Unfortunately
pip-accel did not preserve this information.

That’s when I decided that next to pip’s pip.req.InstallRequirement
and setuptools’ pkg_resources.Requirement I would introduce yet
another type of requirement object... It’s basically just a summary of the
other two types of requirement objects and it also provides access to the
original requirement objects (for those who are interested; the interfaces are
basically undocumented AFAIK).

	
class pip_accel.req.Requirement(config, requirement)

	Simple wrapper for the requirement objects defined by pip and setuptools.

	
__init__(config, requirement)

	Initialize a requirement object.

	Parameters:	
	config – A Config object.

	requirement – A pip.req.InstallRequirement object.

	
__repr__()

	Generate a human friendly representation of a requirement object.

	
name

	The name of the Python package (a string).

This is the name used to register a package on PyPI and the name
reported by commands like pip freeze. Based on
pkg_resources.Requirement.project_name.

	
version

	The version of the package that pip wants to install (a string).

	
related_archives

	The pathnames of the source distribution(s) for this requirement (a list of strings).

Note

This property is very new in pip-accel and its logic may need
some time to mature. For now any misbehavior by this property
shouldn’t be too much of a problem because the pathnames
reported by this property are only used for cache
invalidation (see the last_modified and
checksum properties).

	
last_modified

	The last modified time of the requirement’s source distribution archive(s) (a number).

The value of this property is based on the related_archives
property. If no related archives are found the current time is
reported. In the balance between not invalidating cached binary
distributions enough and invalidating them too frequently, this
property causes the latter to happen.

	
checksum

	The SHA1 checksum of the requirement’s source distribution archive(s) (a string).

The value of this property is based on the related_archives
property. If no related archives are found the SHA1 digest of the empty
string is reported.

	
source_directory

	The pathname of the directory containing the unpacked source distribution (a string).

This is the directory that contains a setup.py script. Based on
pip.req.InstallRequirement.source_dir.

	
is_wheel

	True [https://docs.python.org/2/library/constants.html#True] when the requirement is a wheel, False [https://docs.python.org/2/library/constants.html#False] otherwise.

Note

To my surprise it seems to be non-trivial to determine
whether a given pip.req.InstallRequirement object
produced by pip’s internal Python API concerns a source
distribution or a wheel distribution.

There’s a pip.req.InstallRequirement.is_wheel
property but I’m currently looking at a wheel distribution
whose is_wheel property returns None [https://docs.python.org/2/library/constants.html#None], apparently
because the requirement’s url property is also None [https://docs.python.org/2/library/constants.html#None].

Whether this is an obscure implementation detail of pip or
caused by the way pip-accel invokes pip, I really can’t tell
(yet).

	
is_transitive

	Whether the dependency is transitive (indirect).

True [https://docs.python.org/2/library/constants.html#True] when the requirement is a transitive dependency (a
dependency of a dependency) or False [https://docs.python.org/2/library/constants.html#False] when the requirement is a
direct dependency (specified on pip’s command line or in a
requirements.txt file). Based on
pip.req.InstallRequirement.comes_from.

	
is_direct

	The opposite of Requirement.is_transitive.

	
is_editable

	Whether the requirement should be installed in editable mode.

True [https://docs.python.org/2/library/constants.html#True] when the requirement is to be installed in editable mode
(i.e. setuptools “develop mode”). Based on
pip.req.InstallRequirement.editable.

	
sdist_metadata

	Get the distribution metadata of an unpacked source distribution.

	
wheel_metadata

	Get the distribution metadata of an unpacked wheel distribution.

	
__str__()

	Render a human friendly string describing the requirement.

	
class pip_accel.req.TransactionalUpdate(requirement)

	Context manager that enables transactional package upgrades.

	
__init__(requirement)

	Initialize a TransactionalUpdate object.

	Parameters:	requirement – A Requirement object.

	
__enter__()

	Prepare package upgrades by removing conflicting installations.

	
__exit__(exc_type=None, exc_value=None, traceback=None)

	Finalize or rollback a package upgrade.

	
pip_accel.req.escape_name(requirement_name)

	Escape a requirement’s name for use in a regular expression.

This backslash-escapes all non-alphanumeric characters and replaces dashes
and underscores with a character class that matches a dash or underscore
(effectively treating dashes and underscores equivalently).

	Parameters:	requirement_name – The name of the requirement (a string).

	Returns:	The requirement’s name as a regular expression (a string).

	
pip_accel.req.escape_name_callback(match)

	Used by escape_name() to treat dashes and underscores as equivalent.

	Parameters:	match – A regular expression match object that captured a single character.

	Returns:	A regular expression string that matches the captured character.

pip_accel.bdist

Functions to manipulate Python binary distribution archives.

The functions in this module are used to create, transform and install from
binary distribution archives (which are not supported by tools like
easy_install and pip).

	
class pip_accel.bdist.BinaryDistributionManager(config)

	Generates and transforms Python binary distributions.

	
__init__(config)

	Initialize the binary distribution manager.

	Parameters:	config – The pip-accel configuration (a Config
object).

	
get_binary_dist(requirement)

	Get or create a cached binary distribution archive.

	Parameters:	requirement – A Requirement object.

	Returns:	An iterable of tuples with two values each: A
tarfile.TarInfo [https://docs.python.org/2/library/tarfile.html#tarfile.TarInfo] object and a file-like object.

Gets the cached binary distribution that was previously built for the
given requirement. If no binary distribution has been cached yet, a new
binary distribution is built and added to the cache.

Uses build_binary_dist() to build binary distribution
archives. If this fails with a build error get_binary_dist()
will use SystemPackageManager to check for and install
missing system packages and retry the build when missing system
packages were installed.

	
needs_invalidation(requirement, cache_file)

	Check whether a cached binary distribution needs to be invalidated.

	Parameters:	
	requirement – A Requirement object.

	cache_file – The pathname of a cached binary distribution (a string).

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if the cached binary distribution needs to be
invalidated, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
recall_checksum(cache_file)

	Get the checksum of the input used to generate a binary distribution archive.

	Parameters:	cache_file – The pathname of the binary distribution archive (a string).

	Returns:	The checksum (a string) or None [https://docs.python.org/2/library/constants.html#None] (when no checksum is available).

	
persist_checksum(requirement, cache_file)

	Persist the checksum of the input used to generate a binary distribution.

	Parameters:	
	requirement – A Requirement object.

	cache_file – The pathname of a cached binary distribution (a string).

Note

The checksum is only calculated and persisted when
trust_mod_times is False [https://docs.python.org/2/library/constants.html#False].

	
build_binary_dist(requirement)

	Build a binary distribution archive from an unpacked source distribution.

	Parameters:	requirement – A Requirement object.

	Returns:	The pathname of a binary distribution archive (a string).

	Raises:	BinaryDistributionError when the original command
and the fall back both fail to produce a binary distribution
archive.

This method uses the following command to build binary distributions:

$ python setup.py bdist_dumb --format=tar

This command can fail for two main reasons:

	The package is missing binary dependencies.

	The setup.py script doesn’t (properly) implement bdist_dumb
binary distribution format support.

The first case is dealt with in get_binary_dist(). To deal
with the second case this method falls back to the following command:

$ python setup.py bdist

This fall back is almost never needed, but there are Python packages
out there which require this fall back (this method was added because
the installation of Paver==1.2.3 failed, see issue 37 [https://github.com/paylogic/pip-accel/issues/37] for
details about that).

	
build_binary_dist_helper(requirement, setup_command)

	Convert an unpacked source distribution to a binary distribution.

	Parameters:	
	requirement – A Requirement object.

	setup_command – A list of strings with the arguments to
setup.py.

	Returns:	The pathname of the resulting binary distribution (a string).

	Raises:	BuildFailed when the build reports an error (e.g.
because of missing binary dependencies like system
libraries).

	Raises:	NoBuildOutput when the build does not produce the
expected binary distribution archive.

	
transform_binary_dist(archive_path)

	Transform binary distributions into a form that can be cached for future use.

	Parameters:	archive_path – The pathname of the original binary distribution archive.

	Returns:	An iterable of tuples with two values each:
	A tarfile.TarInfo [https://docs.python.org/2/library/tarfile.html#tarfile.TarInfo] object.

	A file-like object.

This method transforms a binary distribution archive created by
build_binary_dist() into a form that can be cached for future
use. This comes down to making the pathnames inside the archive
relative to the prefix that the binary distribution was built for.

	
install_binary_dist(members, virtualenv_compatible=True, prefix=None, python=None, track_installed_files=False)

	Install a binary distribution into the given prefix.

	Parameters:	
	members – An iterable of tuples with two values each:

	A tarfile.TarInfo [https://docs.python.org/2/library/tarfile.html#tarfile.TarInfo] object.

	A file-like object.

	prefix – The “prefix” under which the requirements should be
installed. This will be a pathname like /usr,
/usr/local or the pathname of a virtual environment.
Defaults to Config.install_prefix.

	python – The pathname of the Python executable to use in the shebang
line of all executable Python scripts inside the binary
distribution. Defaults to Config.python_executable.

	virtualenv_compatible – Whether to enable workarounds to make the
resulting filenames compatible with
virtual environments (defaults to
True [https://docs.python.org/2/library/constants.html#True]).

	track_installed_files – If this is True [https://docs.python.org/2/library/constants.html#True] (not the default for
this method because of backwards
compatibility) pip-accel will create
installed-files.txt as required by
pip to properly uninstall packages.

This method installs a binary distribution created by
build_binary_dist() into the given prefix (a directory like
/usr, /usr/local or a virtual environment).

	
fix_hashbang(contents, python)

	Rewrite hashbangs [http://en.wikipedia.org/wiki/Shebang_(Unix)] to use the correct Python executable.

	Parameters:	
	contents – The contents of the script whose hashbang should be
fixed (a string).

	python – The absolute pathname of the Python executable (a
string).

	Returns:	The modified contents of the script (a string).

	
update_installed_files(installed_files)

	Track the files installed by a package so pip knows how to remove the package.

This method is used by install_binary_dist() (which collects
the list of installed files for update_installed_files()).

	Parameters:	installed_files – A list of absolute pathnames (strings) with the
files that were just installed.

pip_accel.caches

Support for multiple cache backends.

This module defines an abstract base class (AbstractCacheBackend)
to be inherited by custom cache backends in order to easily integrate them in
pip-accel. The cache backends included in pip-accel are built on top of the
same mechanism.

Additionally this module defines CacheManager which makes it
possible to merge the available cache backends into a single logical cache
which automatically disables backends that report errors.

	
class pip_accel.caches.CacheBackendMeta(name, bases, dict)

	Metaclass to intercept cache backend definitions.

	
__init__(name, bases, dict)

	Intercept cache backend definitions.

	
class pip_accel.caches.AbstractCacheBackend(config)

	Abstract base class for implementations of pip-accel cache backends.

Subclasses of this class are used by pip-accel to store Python distribution
archives in order to accelerate performance and gain independence of
external systems like PyPI and distribution sites.

Note

This base class automatically registers subclasses at definition
time, providing a simple and elegant registration mechanism for
custom backends. This technique uses metaclasses and was
originally based on the article Using Metaclasses to Create
Self-Registering Plugins [http://effbot.org/zone/metaclass-plugins.htm].

I’ve since had to introduce some additional magic to make this
mechanism compatible with both Python 2.x and Python 3.x because
the syntax for metaclasses is very much incompatible and I refuse
to write separate implementations for both :-).

	
__init__(config)

	Initialize a cache backend.

	Parameters:	config – The pip-accel configuration (a Config
object).

	
get(filename)

	Get a previously cached distribution archive from the cache.

	Parameters:	filename – The expected filename of the distribution archive (a
string).

	Returns:	The absolute pathname of a local file or None [https://docs.python.org/2/library/constants.html#None] when the
distribution archive hasn’t been cached.

This method is called by pip-accel before fetching or building a
distribution archive, in order to check whether a previously cached
distribution archive is available for re-use.

	
put(filename, handle)

	Store a newly built distribution archive in the cache.

	Parameters:	
	filename – The filename of the distribution archive (a string).

	handle – A file-like object that provides access to the
distribution archive.

This method is called by pip-accel after fetching or building a
distribution archive, in order to cache the distribution archive.

	
__repr__()

	Generate a textual representation of the cache backend.

	
class pip_accel.caches.CacheManager(config)

	Interface to treat multiple cache backends as a single one.

The cache manager automatically disables cache backends that raise
exceptions on get() and put() operations.

	
__init__(config)

	Initialize a cache manager.

Automatically initializes instances of all registered cache backends
based on setuptools’ support for entry points which makes it possible
for external Python packages to register additional cache backends
without any modifications to pip-accel.

	Parameters:	config – The pip-accel configuration (a Config
object).

	
get(requirement)

	Get a distribution archive from any of the available caches.

	Parameters:	requirement – A Requirement object.

	Returns:	The absolute pathname of a local file or None [https://docs.python.org/2/library/constants.html#None] when the
distribution archive is missing from all available caches.

	
put(requirement, handle)

	Store a distribution archive in all of the available caches.

	Parameters:	
	requirement – A Requirement object.

	handle – A file-like object that provides access to the
distribution archive.

	
generate_filename(requirement)

	Generate a distribution archive filename for a package.

	Parameters:	requirement – A Requirement object.

	Returns:	The filename of the distribution archive (a string)
including a single leading directory component to indicate
the cache format revision.

pip_accel.caches.local

Local file system cache backend.

This module implements the local cache backend which stores distribution
archives on the local file system. This is a very simple cache backend, all it
does is create directories and write local files. The only trick here is that
new binary distribution archives are written to temporary files which are
then moved into place atomically using os.rename() [https://docs.python.org/2/library/os.html#os.rename] to avoid partial
reads caused by running multiple invocations of pip-accel at the same time
(which happened in issue 25 [https://github.com/paylogic/pip-accel/issues/25]).

	
class pip_accel.caches.local.LocalCacheBackend(config)

	The local cache backend stores Python distribution archives on the local file system.

	
get(filename)

	Check if a distribution archive exists in the local cache.

	Parameters:	filename – The filename of the distribution archive (a string).

	Returns:	The pathname of a distribution archive on the local file
system or None [https://docs.python.org/2/library/constants.html#None].

	
put(filename, handle)

	Store a distribution archive in the local cache.

	Parameters:	
	filename – The filename of the distribution archive (a string).

	handle – A file-like object that provides access to the
distribution archive.

pip_accel.caches.s3

Amazon S3 cache backend.

This module implements a cache backend that stores distribution archives in a
user defined Amazon S3 [http://aws.amazon.com/s3/] bucket. To enable this
backend you need to define the configuration option
s3_cache_bucket and configure your Amazon S3 API
credentials (see the readme for details).

Using S3 compatible storage services

The Amazon S3 API has been implemented in several open source projects and
dozens of online services. To use pip-accel with an S3 compatible storage
service you can override the s3_cache_url option. The
pip-accel test suite actually uses this option to test the S3 cache backend by
running FakeS3 [https://github.com/jubos/fake-s3] in the background and pointing pip-accel at the FakeS3 server.
Below are some usage notes that may be relevant for people evaluating this
option.

	Secure connections

	Boto [https://github.com/boto/boto] has to be told whether to make a “secure” connection to the S3 API and
pip-accel assumes the https:// URL scheme implies a secure connection
while the http:// URL scheme implies a non-secure connection.

	Calling formats

	Boto [https://github.com/boto/boto] has the concept of “calling formats” for the S3 API and to connect to
the official Amazon S3 API pip-accel needs to specify the “sub-domain calling
format” or the API calls will fail. When you specify a nonstandard S3 API URL
pip-accel tells Boto to use the “ordinary calling format” instead. This
differentiation will undoubtedly not be correct in all cases. If this is
bothering you then feel free to open an issue on GitHub to make pip-accel more
flexible in this regard.

	Credentials

	If you don’t specify S3 API credentials and the connection attempt to S3 fails
with “NoAuthHandlerFound: No handler was ready to authenticate” pip-accel will
fall back to an anonymous connection attempt. If that fails as well the S3
cache backend is disabled. It may be useful to note here that the pip-accel
test suite uses FakeS3 [https://github.com/jubos/fake-s3] and the anonymous connection fall back works fine.

A note about robustness

The Amazon S3 cache backend implemented in pip_accel.caches.s3 is
specifically written to gracefully disable itself when it encounters known
errors such as:

	The configuration option s3_cache_bucket is not set (i.e.
the user hasn’t configured the backend yet).

	The boto [http://boto.readthedocs.io/en/latest/ref/boto.html#module-boto] package is not installed (i.e. the user ran pip install
pip-accel instead of pip install 'pip-accel[s3]').

	The connection to the S3 API can’t be established (e.g. because API
credentials haven’t been correctly configured).

	The connection to the configured S3 bucket can’t be established (e.g. because
the bucket doesn’t exist or the configured credentials don’t provide access to
the bucket).

Additionally CacheManager automatically disables
cache backends that raise exceptions on
get() and
put() operations. The end
result is that when the S3 backend fails you will just revert to using the
cache on the local file system.

Optionally if you are using read only credentials you can disable
put() operations by setting the configuration
option s3_cache_readonly.

	
class pip_accel.caches.s3.S3CacheBackend(config)

	The S3 cache backend stores distribution archives in a user defined Amazon S3 bucket.

	
get(filename)

	Download a distribution archive from the configured Amazon S3 bucket.

	Parameters:	filename – The filename of the distribution archive (a string).

	Returns:	The pathname of a distribution archive on the local file
system or None [https://docs.python.org/2/library/constants.html#None].

	Raises:	CacheBackendError when any underlying method fails.

	
put(filename, handle)

	Upload a distribution archive to the configured Amazon S3 bucket.

If the s3_cache_readonly configuration option is
enabled this method does nothing.

	Parameters:	
	filename – The filename of the distribution archive (a string).

	handle – A file-like object that provides access to the
distribution archive.

	Raises:	CacheBackendError when any underlying method fails.

	
s3_bucket

	Connect to the user defined Amazon S3 bucket.

Called on demand by get() and put(). Caches its
return value so that only a single connection is created.

	Returns:	A boto.s3.bucket.Bucket [http://boto.readthedocs.io/en/latest/ref/s3.html#boto.s3.bucket.Bucket] object.

	Raises:	CacheBackendDisabledError when the user hasn’t
defined Config.s3_cache_bucket.

	Raises:	CacheBackendError when the connection to the Amazon
S3 bucket fails.

	
s3_connection

	Connect to the Amazon S3 API.

If the connection attempt fails because Boto can’t find credentials the
attempt is retried once with an anonymous connection.

Called on demand by s3_bucket.

	Returns:	A boto.s3.connection.S3Connection [http://boto.readthedocs.io/en/latest/ref/s3.html#boto.s3.connection.S3Connection] object.

	Raises:	CacheBackendError when the connection to the Amazon
S3 API fails.

	
get_cache_key(filename)

	Compose an S3 cache key based on Config.s3_cache_prefix and the given filename.

	Parameters:	filename – The filename of the distribution archive (a string).

	Returns:	The cache key for the given filename (a string).

	
check_prerequisites()

	Validate the prerequisites required to use the Amazon S3 cache backend.

Makes sure the Amazon S3 cache backend is configured
(Config.s3_cache_bucket is defined by the user) and
boto [http://boto.readthedocs.io/en/latest/ref/boto.html#module-boto] is available for use.

	Raises:	CacheBackendDisabledError when a prerequisite fails.

	
class pip_accel.caches.s3.PatchedBotoConfig

	Monkey patch for Boto’s configuration handling.

Boto’s configuration handling is kind of broken on Python 3 as documented
here [https://github.com/boto/boto/issues/2617]. The PatchedBotoConfig
class implements a context manager that temporarily patches Boto to work
around the bug.

Without this monkey patch it is impossible to configure the number of
retries on Python 3 which makes the pip-accel test suite horribly slow.

	
__init__()

	Initialize a PatchedBotoConfig object.

	
get(section, name, default=None, **kw)

	Replacement for boto.pyami.config.Config.get().

pip_accel.deps

System package dependency handling.

The pip_accel.deps module is an extension of pip-accel that deals
with dependencies on system packages. Currently only Debian Linux and
derivative Linux distributions are supported by this extension but it should be
fairly easy to add support for other platforms.

The interface between pip-accel and SystemPackageManager focuses on
install_dependencies() (the other methods are
used internally).

	
class pip_accel.deps.SystemPackageManager(config)

	Interface to the system’s package manager.

	
__init__(config)

	Initialize the system package dependency manager.

	Parameters:	config – The pip-accel configuration (a Config
object).

	
install_dependencies(requirement)

	Install missing dependencies for the given requirement.

	Parameters:	requirement – A Requirement object.

	Returns:	True [https://docs.python.org/2/library/constants.html#True] when missing system packages were installed,
False [https://docs.python.org/2/library/constants.html#False] otherwise.

	Raises:	DependencyInstallationRefused when automatic
installation is disabled or refused by the operator.

	Raises:	DependencyInstallationFailed when the installation
of missing system packages fails.

If pip-accel fails to build a binary distribution, it will call this
method as a last chance to install missing dependencies. If this
function does not raise an exception, pip-accel will retry the build
once.

	
find_missing_dependencies(requirement)

	Find missing dependencies of a Python package.

	Parameters:	requirement – A Requirement object.

	Returns:	A list of strings with system package names.

	
find_known_dependencies(requirement)

	Find the known dependencies of a Python package.

	Parameters:	requirement – A Requirement object.

	Returns:	A list of strings with system package names.

	
find_installed_packages()

	Find the installed system packages.

	Returns:	A list of strings with system package names.

	Raises:	SystemDependencyError when the command to list the
installed system packages fails.

	
installation_refused(requirement, missing_dependencies, reason)

	Raise DependencyInstallationRefused with a user friendly message.

	Parameters:	
	requirement – A Requirement object.

	missing_dependencies – A list of strings with missing dependencies.

	reason – The reason why installation was refused (a string).

	
confirm_installation(requirement, missing_dependencies, install_command)

	Ask the operator’s permission to install missing system packages.

	Parameters:	
	requirement – A Requirement object.

	missing_dependencies – A list of strings with missing dependencies.

	install_command – A list of strings with the command line needed
to install the missing dependencies.

	Raises:	DependencyInstallationRefused when the operator refuses.

pip_accel.utils

Utility functions for the pip accelerator.

The pip_accel.utils module defines several miscellaneous/utility
functions that are used throughout pip_accel but don’t really belong
with any single module.

	
pip_accel.utils.compact(text, **kw)

	Compact whitespace in a string and format any keyword arguments into the string.

	Parameters:	
	text – The text to compact (a string).

	kw – Any keyword arguments to apply using str.format().

	Returns:	The compacted, formatted string.

The whitespace compaction preserves paragraphs.

	
pip_accel.utils.expand_path(pathname)

	Expand the home directory in a pathname based on the effective user id.

	Parameters:	pathname – A pathname that may start with ~/, indicating the path
should be interpreted as being relative to the home
directory of the current (effective) user.

	Returns:	The (modified) pathname.

This function is a variant of os.path.expanduser() [https://docs.python.org/2/library/os.path.html#os.path.expanduser] that doesn’t use
$HOME but instead uses the home directory of the effective user id.
This is basically a workaround for sudo -s not resetting $HOME.

	
pip_accel.utils.create_file_url(pathname)

	Create a file:... URL from a local pathname.

	Parameters:	pathname – The pathname of a local file or directory (a string).

	Returns:	A URL that refers to the local file or directory (a string).

	
pip_accel.utils.find_home_directory()

	Look up the home directory of the effective user id.

	Returns:	The pathname of the home directory (a string).

Note

On Windows this uses the %APPDATA% environment variable (if
available) and otherwise falls back to ~/Application Data.

	
pip_accel.utils.is_root()

	Detect whether we’re running with super user privileges.

	
pip_accel.utils.get_python_version()

	Get a string identifying the currently running Python version.

This function generates a string that uniquely identifies the currently
running Python implementation and version. The Python implementation is
discovered using platform.python_implementation() [https://docs.python.org/2/library/platform.html#platform.python_implementation] and the major
and minor version numbers are extracted from sys.version_info [https://docs.python.org/2/library/sys.html#sys.version_info].

	Returns:	A string containing the name of the Python implementation
and the major and minor version numbers.

Example:

>>> from pip_accel.utils import get_python_version
>>> get_python_version()
'CPython-2.7'

	
pip_accel.utils.makedirs(path, mode=511)

	Create a directory if it doesn’t already exist (keeping concurrency in mind).

	Parameters:	
	path – The pathname of the directory to create (a string).

	mode – The mode to apply to newly created directories (an integer,
defaults to the octal number 0777).

	Returns:	True [https://docs.python.org/2/library/constants.html#True] when the directory was created, False [https://docs.python.org/2/library/constants.html#False] if it already
existed.

	Raises:	Any exceptions raised by os.makedirs() [https://docs.python.org/2/library/os.html#os.makedirs] except for
errno.EEXIST [https://docs.python.org/2/library/errno.html#errno.EEXIST] (this error is swallowed and False [https://docs.python.org/2/library/constants.html#False] is
returned instead).

	
pip_accel.utils.same_directories(path1, path2)

	Check if two pathnames refer to the same directory.

	Parameters:	
	path1 – The first pathname (a string).

	path2 – The second pathname (a string).

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if both pathnames refer to the same directory,
False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
pip_accel.utils.hash_files(method, *files)

	Calculate the hexadecimal digest of one or more local files.

	Parameters:	
	method – The hash method (a string, given to hashlib.new()).

	files – The pathname(s) of file(s) to hash (zero or more strings).

	Returns:	The calculated hex digest (a string).

	
pip_accel.utils.replace_file(src, dst)

	Overwrite a file (in an atomic fashion when possible).

	Parameters:	
	src – The pathname of the source file (a string).

	dst – The pathname of the destination file (a string).

	
class pip_accel.utils.AtomicReplace(filename)

	Context manager to atomically replace a file’s contents.

	
__init__(filename)

	Initialize a AtomicReplace object.

	Parameters:	filename – The pathname of the file to replace (a string).

	
__enter__()

	Prepare to replace the file’s contents.

	Returns:	The pathname of a temporary file in the same directory as the
file to replace (a string). Using this temporary file ensures
that replace_file() doesn’t fail due to a
cross-device rename operation.

	
__exit__(exc_type=None, exc_value=None, traceback=None)

	Replace the file’s contents (if no exception occurred) using replace_file().

	
pip_accel.utils.requirement_is_installed(expr)

	Check whether a requirement is installed.

	Parameters:	expr – A requirement specification similar to those used in pip
requirement files (a string).

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if the requirement is available (installed),
False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
pip_accel.utils.is_installed(package_name)

	Check whether a package is installed in the current environment.

	Parameters:	package_name – The name of the package (a string).

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if the package is installed, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
pip_accel.utils.uninstall(*package_names)

	Uninstall one or more packages using the Python equivalent of pip uninstall --yes.

The package(s) to uninstall must be installed, otherwise pip will raise an
UninstallationError. You can check for installed packages using
is_installed().

	Parameters:	package_names – The names of one or more Python packages (strings).

	
pip_accel.utils.match_option(argument, short_option, long_option)

	Match a command line argument against a short and long option.

	Parameters:	
	argument – The command line argument (a string).

	short_option – The short option (a string).

	long_option – The long option (a string).

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if the argument matches, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
pip_accel.utils.is_short_option(argument)

	Check if a command line argument is a short option.

	Parameters:	argument – The command line argument (a string).

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if the argument is a short option, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
pip_accel.utils.match_option_with_value(arguments, option, value)

	Check if a list of command line options contains an option with a value.

	Parameters:	
	arguments – The command line arguments (a list of strings).

	option – The long option (a string).

	value – The expected value (a string).

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if the command line contains the option/value pair,
False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
pip_accel.utils.contains_sublist(lst, sublst)

	Check if one list contains the items from another list (in the same order).

	Parameters:	
	lst – The main list.

	sublist – The sublist to check for.

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if the main list contains the items from the
sublist in the same order, False [https://docs.python.org/2/library/constants.html#False] otherwise.

Based on this StackOverflow answer [http://stackoverflow.com/a/3314913].

pip_accel.exceptions

Exceptions for structured error handling.

This module defines named exceptions raised by pip-accel when it encounters
error conditions that:

	Already require structured handling inside pip-accel

	May require structured handling by callers of pip-accel

Yes, I know, I just made your lovely and elegant Python look a whole lot like
Java! I guess the message to take away here is that (in my opinion) structured
error handling helps to build robust software that acknowledges failures exist
and tries to deal with them (even if only by clearly recognizing a problem and
giving up when there’s nothing useful to do!).

Hierarchy of exceptions

If you’re interested in implementing structured handling of exceptions reported
by pip-accel the following diagram may help by visualizing the hierarchy:

[image: Inheritance diagram of EnvironmentMismatchError, UnknownDistributionFormat, InvalidSourceDistribution, BuildFailed, NoBuildOutput, CacheBackendError, CacheBackendDisabledError, DependencyInstallationRefused, DependencyInstallationFailed]

	
exception pip_accel.exceptions.PipAcceleratorError(text, **kw)

	Base exception for all exception types explicitly raised by pip_accel.

	
__init__(text, **kw)

	Initialize a PipAcceleratorError object.

Accepts the same arguments as compact().

	
exception pip_accel.exceptions.NothingToDoError(text, **kw)

	Custom exception raised on empty requirement sets.

Raised by get_pip_requirement_set()
when pip doesn’t report an error but also doesn’t generate a requirement
set (this happens when the user specifies an empty requirements file).

	
exception pip_accel.exceptions.EnvironmentMismatchError(text, **kw)

	Custom exception raised when a cross-environment action is attempted.

Raised by validate_environment() when
it detects a mismatch between sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix] and $VIRTUAL_ENV.

	
exception pip_accel.exceptions.UnknownDistributionFormat(text, **kw)

	Custom exception raised on unrecognized distribution archives.

Raised by is_wheel when it cannot
discern whether a given unpacked distribution is a source distribution or a
wheel distribution.

	
exception pip_accel.exceptions.BinaryDistributionError(text, **kw)

	Base class for exceptions related to the generation of binary distributions.

	
exception pip_accel.exceptions.InvalidSourceDistribution(text, **kw)

	Custom exception raised when a source distribution’s setup script is missing.

Raised by build_binary_dist()
when the given directory doesn’t contain a Python source distribution.

	
exception pip_accel.exceptions.BuildFailed(text, **kw)

	Custom exception raised when a binary distribution build fails.

Raised by build_binary_dist()
when a binary distribution build fails.

	
exception pip_accel.exceptions.NoBuildOutput(text, **kw)

	Custom exception raised when binary distribution builds don’t generate an archive.

Raised by build_binary_dist()
when a binary distribution build fails to produce the expected binary
distribution archive.

	
exception pip_accel.exceptions.CacheBackendError(text, **kw)

	Custom exception raised by cache backends when they fail in a controlled manner.

	
exception pip_accel.exceptions.CacheBackendDisabledError(text, **kw)

	Custom exception raised by cache backends when they require configuration.

	
exception pip_accel.exceptions.SystemDependencyError(text, **kw)

	Base class for exceptions related to missing system packages.

	
exception pip_accel.exceptions.DependencyInstallationRefused(text, **kw)

	Custom exception raised when installation of dependencies is refused.

Raised by SystemPackageManager when one or more known to be
required system packages are missing and automatic installation of missing
dependencies is disabled by the operator.

	
exception pip_accel.exceptions.DependencyInstallationFailed(text, **kw)

	Custom exception raised when installation of dependencies fails.

Raised by SystemPackageManager when the installation of
missing system packages fails.

pip_accel.tests

Test suite for the pip accelerator.

I’ve decided to include the test suite in the online documentation of the pip
accelerator and I realize this may be somewhat unconventional... My reason for
this is to enforce the same level of code quality (which obviously includes
documentation) for the test suite that I require from myself and contributors
for the other parts of the pip-accel project (and my other open source
projects).

A second and more subtle reason is because of a tendency I’ve noticed in a lot
of my projects: Useful “miscellaneous” functionality is born in test suites and
eventually makes its way to the public API of the project in question. By
writing documentation up front I’m saving my future self time. That may sound
silly, but consider that writing documentation is a lot easier when you don’t
have to do so retroactively.

	
pip_accel.tests.setUpModule()

	Initialize verbose logging to the terminal.

	
pip_accel.tests.tearDownModule()

	Cleanup any temporary directories created by create_temporary_directory().

	
pip_accel.tests.delete_read_only(action, pathname, exc_info)

	Force removal of read only files on Windows.

Based on http://stackoverflow.com/a/21263493/788200.
Needed because of https://ci.appveyor.com/project/xolox/pip-accel/build/1.0.24.

	
pip_accel.tests.create_temporary_directory(**kw)

	Create a temporary directory that will be cleaned up when the test suite ends.

	Parameters:	kw – Any keyword arguments are passed on to
tempfile.mkdtemp() [https://docs.python.org/2/library/tempfile.html#tempfile.mkdtemp].

	Returns:	The pathname of a directory created using
tempfile.mkdtemp() [https://docs.python.org/2/library/tempfile.html#tempfile.mkdtemp] (a string).

	
class pip_accel.tests.PipAccelTestCase(methodName='runTest')

	Container for the tests in the pip-accel test suite.

	
setUp()

	Reset logging verbosity before each test.

	
skipTest(text, *args, **kw)

	Enable backwards compatible “marking of tests to skip”.

By calling this method from a return statement in the test to be
skipped the test can be marked as skipped when possible, without
breaking the test suite when unittest.TestCase.skipTest() isn’t
available.

	
initialize_pip_accel(load_environment_variables=False, **overrides)

	Construct an isolated pip accelerator instance.

The pip-accel instance will not load configuration files but it may
load environment variables because that’s how FakeS3 is enabled on
Travis CI (and in my local tests).

	Parameters:	
	load_environment_variables – If True [https://docs.python.org/2/library/constants.html#True] the pip-accel instance
will load environment variables (not
the default).

	overrides – Any keyword arguments are set as properties on the
Config instance (overrides for
configuration defaults).

	
test_related_archives_logic()

	Test filename translation logic used by pip_accel.req.Requirement.related_archives.

The pip_accel.req.escape_name() function generates regular
expression patterns that match the given requirement name literally
while treating dashes and underscores as equivalent. This test ensures
that the generated regular expression patterns work as expected.

	
test_environment_validation()

	Test the validation of sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix] versus $VIRTUAL_ENV.

This tests the validate_environment() method.

	
test_config_object_handling()

	Test that configuration options can be overridden in the Python API.

	
test_config_file_handling()

	Test error handling during loading of configuration files.

This tests the load_configuration_file() method.

	
test_cleanup_of_broken_links()

	Verify that broken symbolic links in the source index are cleaned up.

This tests the clean_source_index() method.

	
test_empty_download_cache()

	Verify pip-accel’s “keeping pip off the internet” logic using an empty cache.

This test downloads, builds and installs pep8 1.6.2 to verify that
pip-accel keeps pip off the internet when intended.

	
test_package_upgrade()

	Test installation of newer versions over older versions.

	
test_package_downgrade()

	Test installation of older versions over newer version (package downgrades).

	
test_s3_backend()

	Verify the successful usage of the S3 cache backend.

This test downloads, builds and installs pep8 1.6.2 several times to
verify that the S3 cache backend works. It depends on FakeS3.

This test uses a temporary binary index which it wipes after a
successful installation and then it installs the exact same package
again to test the code path that gets a cached binary distribution
archive from the S3 cache backend.

Warning

This test abuses FakeS3 in several ways to simulate the
handling of error conditions (it’s not pretty but it is
effective because it significantly increases the coverage
of the S3 cache backend):

	First the FakeS3 root directory is made read only
to force an error when uploading to S3. This is to test
the automatic fall back to a read only S3 bucket.

	Then FakeS3 is terminated to force a failure in the
S3 cache backend. This verifies that pip-accel handles
the failure of an “optional” cache backend gracefully.

	
test_wheel_install()

	Test the installation of a package from a wheel distribution.

This test installs Paver 1.2.4 (a random package without dependencies
that I noticed is available as a Python 2.x and Python 3.x compatible
wheel archive on PyPI).

	
test_bdist_fallback()

	Verify that fall back from bdist_dumb to bdist action works.

This test verifies that pip-accel properly handles setup.py scripts
that break python setup.py bdist_dumb but support python setup.py
bdist as a fall back. This issue was originally reported based on
Paver==1.2.3 in issue 37 [https://github.com/paylogic/pip-accel/issues/37], so that’s the package used for this
test.

	
test_installed_files_tracking()

	Verify that tracking of installed files works correctly.

This tests the update_installed_files()
method.

When pip installs a Python package it also creates a file called
installed-files.txt that contains the pathnames of the files that
were installed. This file enables pip to uninstall Python packages
later on. Because pip-accel implements its own package installation it
also creates the installed-files.txt file, in order to enable the
user to uninstall a package with pip even if the package was installed
using pip-accel.

	
test_setuptools_injection()

	Test that setup.py scripts are always evaluated using setuptools.

This test installs docutils==0.12 as a sample package whose
setup.py script uses distutils instead of setuptools. Because
pip and pip-accel unconditionally evaluate setup.py scripts using
setuptools instead of distutils the resulting installation should
have an *.egg-info metadata directory instead of a file (which is
what this test verifies).

	
test_requirement_objects()

	Test the public properties of pip_accel.req.Requirement objects.

This test confirms (amongst other things) that the logic which
distinguishes transitive requirements from non-transitive (direct)
requirements works correctly (and keeps working as expected :-).

	
test_editable_install()

	Test the installation of editable packages using pip install --editable.

This test clones the git repository of the Python package pep8 and
installs the package as an editable package.

We want to import the pep8 module to confirm that it was
properly installed but we can’t do that in the process that’s running
the test suite because it will fail with an import error. Python
subprocesses however will import the pep8 module just fine.

This happens because easy-install.pth (used for editable packages)
is loaded once during startup of the Python interpreter and never
refreshed. There’s no public, documented way that I know of to refresh
sys.path [https://docs.python.org/2/library/sys.html#sys.path] (see issue 402 in the Gunicorn issue tracker [https://github.com/benoitc/gunicorn/issues/402] for
a related discussion).

	
test_setup_requires_caching()

	Test that pip_accel.SetupRequiresPatch works as expected.

This test is a bit convoluted because I haven’t been able to find a
simpler way to ensure that setup requirements can be re-used from the
.eggs directory managed by pip-accel. A side effect inside the
setup script seems to be required, but the setuptools sandbox forbids
writing to files outside the build directory so an external command
needs to be used ...

	
generate_package(name, version, source_index, tracker_script, find_links=None, setup_requires=[])

	Helper for test_setup_requires_caching() to generate temporary Python packages.

	
test_time_based_cache_invalidation()

	Test default cache invalidation logic (based on modification times).

When a source distribution archive is changed the cached binary
distribution archive is invalidated and rebuilt. This test ensures that
the default cache invalidation logic (based on modification times of
files) works as expected.

	
test_checksum_based_cache_invalidation()

	Test alternate cache invalidation logic (based on checksums).

When a source distribution archive is changed the cached binary
distribution archive is invalidated and rebuilt. This test ensures that
the alternate cache invalidation logic (based on SHA1 checksums of
files) works as expected.

	
check_cache_invalidation(**overrides)

	Test cache invalidation with the given option(s).

	
test_cli_install()

	Test the pip-accel command line interface by installing a trivial package.

This test provides some test coverage for the pip-accel command line
interface, to make sure the command line interface works on all
supported versions of Python.

	
test_cli_usage_message()

	Test the pip-accel command line usage message.

	
test_cli_as_module()

	Make sure python -m pip_accel ... works.

	
test_constraint_file_support()

	Test support for constraint files.

With the pip 7.x upgrade support for constraint files was added to pip.
Due to the way this was implemented in pip the use of constraint files
would break pip-accel as reported in issue 63 [https://github.com/paylogic/pip-accel/issues/63]. The issue was since
fixed and this test makes sure constraint files remain supported.

	
test_empty_requirements_file()

	Test handling of empty requirements files.

Old versions of pip-accel would raise an internal exception when an
empty requirements file was given. This was reported in issue 47 [https://github.com/paylogic/pip-accel/issues/47] and
it was pointed out that pip reports a warning but exits with return
code zero. This test makes sure pip-accel now handles empty
requirements files the same way pip does.

	
test_system_package_dependency_installation()

	Test the (automatic) installation of required system packages.

This test installs cffi 0.8.6 to confirm that the system packages
required by cffi are automatically installed by pip-accel to make the
build of cffi succeed.

Warning

This test forces the removal of the system package
libffi-dev before it tries to install cffi, because
without this nasty hack the test would only install
required system packages on the first run, because on
later runs the required system packages would already be
installed. Because of this very non conventional behavior
the test is skipped unless the environment variable
PIP_ACCEL_TEST_AUTO_INSTALL=yes is set (opt-in).

	
test_system_package_dependency_failures()

	Test that unsupported platforms are handled gracefully in system package dependency management.

	
pep8_git_repo

	The pathname of a git clone of the pep8 package (None [https://docs.python.org/2/library/constants.html#None] if git fails).

	
pip_accel.tests.wipe_directory(pathname)

	Delete and recreate a directory.

	Parameters:	pathname – The directory’s pathname (a string).

	
pip_accel.tests.create_source_dist(sources)

	Create a source distribution archive from a Python package.

	Parameters:	sources – A dictionary containing a setup.py script (a string).

	Returns:	The pathname of the generated archive (a string).

	
pip_accel.tests.uninstall_through_subprocess(package_name)

	Remove an installed Python package by running pip as a subprocess.

	Parameters:	package_name – The name of the package (a string).

This function is specifically for use in the pip-accel test suite to
reliably uninstall a Python package installed in the current environment
while avoiding issues caused by stale data in pip and the packages it uses
internally. Doesn’t complain if the package isn’t installed to begin with.

	
pip_accel.tests.find_installed_version(package_name, encoding='UTF-8')

	Find the version of an installed package (in a subprocess).

	Parameters:	package_name – The name of the package (a string).

	Returns:	The package’s version (a string) or None [https://docs.python.org/2/library/constants.html#None] if the package can’t
be found.

This function is specifically for use in the pip-accel test suite to
reliably determine the installed version of a Python package in the current
environment while avoiding issues caused by stale data in pip and the
packages it uses internally.

	
pip_accel.tests.find_one_file(directory, pattern)

	Use find_files() to find a file and make sure a single file is matched.

	Parameters:	
	directory – The pathname of the directory to be searched (a string).

	pattern – The filename pattern to match (a string).

	Returns:	The matched pathname (a string).

	Raises:	AssertionError [https://docs.python.org/2/library/exceptions.html#exceptions.AssertionError] when no file or more than one
file is matched.

	
pip_accel.tests.find_files(directory, pattern)

	Find files whose pathname contains the given substring.

	Parameters:	
	directory – The pathname of the directory to be searched (a string).

	pattern – The filename pattern to match (a string).

	Returns:	A generator of pathnames (strings).

	
pip_accel.tests.try_program(program_name)

	Test that a Python program (installed in the current environment) runs successfully.

This assumes that the program supports the --help option, because the
program is executed with the --help argument to verify that the program
runs (--help was chose because it implies a lack of side effects).

	Parameters:	program_name – The base name of the program to test (a string). The
absolute pathname will be calculated by combining
sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix] and this argument.

	Raises:	AssertionError [https://docs.python.org/2/library/exceptions.html#exceptions.AssertionError] when a test fails.

	
pip_accel.tests.find_python_program(program_name)

	Get the absolute pathname of a Python program installed in the current environment.

	Parameters:	name – The base name of the program (a string).

	Returns:	The absolute pathname of the program (a string).

	
pip_accel.tests.generate_nonexisting_pathname()

	Generate a pathname that is expected not to exist.

	Returns:	A pathname (string) that doesn’t refer to an existing directory
or file on the file system (assuming random.random() [https://docs.python.org/2/library/random.html#random.random]
does what it’s documented to do :-).

	
pip_accel.tests.test_cli(*arguments)

	Test the pip-accel command line interface.

Runs pip-accel’s command line interface inside the current Python process
by temporarily changing sys.argv [https://docs.python.org/2/library/sys.html#sys.argv], invoking the
pip_accel.cli.main() function and catching
SystemExit [https://docs.python.org/2/library/exceptions.html#exceptions.SystemExit].

	Parameters:	arguments – The value that sys.argv [https://docs.python.org/2/library/sys.html#sys.argv] should be set to (a
list of strings).

	Returns:	The exit code of pip-accel.

	
class pip_accel.tests.CaptureOutput

	Context manager that captures what’s written to sys.stdout [https://docs.python.org/2/library/sys.html#sys.stdout].

	
__init__()

	Initialize a string IO object to be used as sys.stdout [https://docs.python.org/2/library/sys.html#sys.stdout].

	
__enter__()

	Start capturing what’s written to sys.stdout [https://docs.python.org/2/library/sys.html#sys.stdout].

	
__exit__(exc_type=None, exc_value=None, traceback=None)

	Stop capturing what’s written to sys.stdout [https://docs.python.org/2/library/sys.html#sys.stdout].

	
__str__()

	Get the text written to sys.stdout [https://docs.python.org/2/library/sys.html#sys.stdout].

	
class pip_accel.tests.AptLock

	Cross-process locking for critical sections to enable parallel execution of the test suite.

	
__init__()

	Initialize an AptLock object.

	
class pip_accel.tests.FakeS3Server(**options)

	Subclass of ExternalCommand that manages a temporary FakeS3 server.

	
__init__(**options)

	Initialize a FakeS3Server object.

	
root = None

	The pathname of the temporary directory used to store the files
required to run the FakeS3 server (a string).

	
client_options

	Configuration options for pip-accel to connect with the FakeS3 server.

This is a dictionary of keyword arguments for the Config
initializer to make pip-accel connect with the FakeS3 server.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pip_accel	

 	
 	
 pip_accel.bdist	

 	
 	
 pip_accel.caches	

 	
 	
 pip_accel.caches.local	

 	
 	
 pip_accel.caches.s3	

 	
 	
 pip_accel.config	

 	
 	
 pip_accel.deps	

 	
 	
 pip_accel.exceptions	

 	
 	
 pip_accel.req	

 	
 	
 pip_accel.tests	

 	
 	
 pip_accel.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__enter__() (pip_accel.DownloadLogFilter method)

 	(pip_accel.PatchedAttribute method)

 	(pip_accel.SetupRequiresPatch method)

 	(pip_accel.req.TransactionalUpdate method)

 	(pip_accel.tests.CaptureOutput method)

 	(pip_accel.utils.AtomicReplace method)

 	__exit__() (pip_accel.DownloadLogFilter method)

 	(pip_accel.PatchedAttribute method)

 	(pip_accel.SetupRequiresPatch method)

 	(pip_accel.req.TransactionalUpdate method)

 	(pip_accel.tests.CaptureOutput method)

 	(pip_accel.utils.AtomicReplace method)

 	__getattr__() (pip_accel.AttributeOverrides method)

 	__init__() (pip_accel.AttributeOverrides method)

 	(pip_accel.PatchedAttribute method)

 	(pip_accel.PipAccelerator method)

 	(pip_accel.SetupRequiresPatch method)

 	(pip_accel.bdist.BinaryDistributionManager method)

 	(pip_accel.caches.AbstractCacheBackend method)

 	(pip_accel.caches.CacheBackendMeta method)

 	(pip_accel.caches.CacheManager method)

 	(pip_accel.caches.s3.PatchedBotoConfig method)

 	(pip_accel.config.Config method)

 	(pip_accel.deps.SystemPackageManager method)

 	(pip_accel.exceptions.PipAcceleratorError method)

 	(pip_accel.req.Requirement method)

 	(pip_accel.req.TransactionalUpdate method)

 	(pip_accel.tests.AptLock method)

 	(pip_accel.tests.CaptureOutput method)

 	(pip_accel.tests.FakeS3Server method)

 	(pip_accel.utils.AtomicReplace method)

 	
 	__repr__() (pip_accel.caches.AbstractCacheBackend method)

 	(pip_accel.req.Requirement method)

 	__setattr__() (pip_accel.AttributeOverrides method)

 	(pip_accel.config.Config method)

 	__str__() (pip_accel.req.Requirement method)

 	(pip_accel.tests.CaptureOutput method)

A

 	
 	AbstractCacheBackend (class in pip_accel.caches)

 	AptLock (class in pip_accel.tests)

 	arguments_allow_wheels() (pip_accel.PipAccelerator method)

 	
 	AtomicReplace (class in pip_accel.utils)

 	AttributeOverrides (class in pip_accel)

 	auto_install (pip_accel.config.Config attribute)

 	available_configuration_files (pip_accel.config.Config attribute)

B

 	
 	binary_cache (pip_accel.config.Config attribute)

 	BinaryDistributionError

 	BinaryDistributionManager (class in pip_accel.bdist)

 	
 	build_binary_dist() (pip_accel.bdist.BinaryDistributionManager method)

 	build_binary_dist_helper() (pip_accel.bdist.BinaryDistributionManager method)

 	build_directory (pip_accel.PipAccelerator attribute)

 	BuildFailed

C

 	
 	cache_format_revision (pip_accel.config.Config attribute)

 	CacheBackendDisabledError

 	CacheBackendError

 	CacheBackendMeta (class in pip_accel.caches)

 	CacheManager (class in pip_accel.caches)

 	CaptureOutput (class in pip_accel.tests)

 	check_cache_invalidation() (pip_accel.tests.PipAccelTestCase method)

 	check_prerequisites() (pip_accel.caches.s3.S3CacheBackend method)

 	checksum (pip_accel.req.Requirement attribute)

 	clean_source_index() (pip_accel.PipAccelerator method)

 	cleanup_temporary_directories() (pip_accel.PipAccelerator method)

 	
 	clear_build_directory() (pip_accel.PipAccelerator method)

 	client_options (pip_accel.tests.FakeS3Server attribute)

 	compact() (in module pip_accel.utils)

 	Config (class in pip_accel.config)

 	confirm_installation() (pip_accel.deps.SystemPackageManager method)

 	contains_sublist() (in module pip_accel.utils)

 	create_build_directory() (pip_accel.PipAccelerator method)

 	create_file_url() (in module pip_accel.utils)

 	create_source_dist() (in module pip_accel.tests)

 	create_temporary_directory() (in module pip_accel.tests)

 	CustomPackageFinder (class in pip_accel)

D

 	
 	data_directory (pip_accel.config.Config attribute)

 	decorate_arguments() (pip_accel.PipAccelerator method)

 	delete_read_only() (in module pip_accel.tests)

 	dependency_links (pip_accel.CustomPackageFinder attribute)

 	
 	DependencyInstallationFailed

 	DependencyInstallationRefused

 	download_source_dists() (pip_accel.PipAccelerator method)

 	DownloadLogFilter (class in pip_accel)

E

 	
 	eggs_cache (pip_accel.config.Config attribute)

 	EnvironmentMismatchError

 	
 	escape_name() (in module pip_accel.req)

 	escape_name_callback() (in module pip_accel.req)

 	expand_path() (in module pip_accel.utils)

F

 	
 	FakeS3Server (class in pip_accel.tests)

 	filter() (pip_accel.DownloadLogFilter method)

 	find_files() (in module pip_accel.tests)

 	find_home_directory() (in module pip_accel.utils)

 	find_installed_packages() (pip_accel.deps.SystemPackageManager method)

 	
 	find_installed_version() (in module pip_accel.tests)

 	find_known_dependencies() (pip_accel.deps.SystemPackageManager method)

 	find_missing_dependencies() (pip_accel.deps.SystemPackageManager method)

 	find_one_file() (in module pip_accel.tests)

 	find_python_program() (in module pip_accel.tests)

 	fix_hashbang() (pip_accel.bdist.BinaryDistributionManager method)

G

 	
 	generate_filename() (pip_accel.caches.CacheManager method)

 	generate_nonexisting_pathname() (in module pip_accel.tests)

 	generate_package() (pip_accel.tests.PipAccelTestCase method)

 	get() (pip_accel.caches.AbstractCacheBackend method)

 	(pip_accel.caches.CacheManager method)

 	(pip_accel.caches.local.LocalCacheBackend method)

 	(pip_accel.caches.s3.PatchedBotoConfig method)

 	(pip_accel.caches.s3.S3CacheBackend method)

 	(pip_accel.config.Config method)

 	
 	get_binary_dist() (pip_accel.bdist.BinaryDistributionManager method)

 	get_cache_key() (pip_accel.caches.s3.S3CacheBackend method)

 	get_pip_requirement_set() (pip_accel.PipAccelerator method)

 	get_python_version() (in module pip_accel.utils)

 	get_requirements() (pip_accel.PipAccelerator method)

H

 	
 	hash_files() (in module pip_accel.utils)

I

 	
 	index_urls (pip_accel.CustomPackageFinder attribute)

 	initialize_directories() (pip_accel.PipAccelerator method)

 	initialize_pip_accel() (pip_accel.tests.PipAccelTestCase method)

 	install_binary_dist() (pip_accel.bdist.BinaryDistributionManager method)

 	install_dependencies() (pip_accel.deps.SystemPackageManager method)

 	install_from_arguments() (pip_accel.PipAccelerator method)

 	install_prefix (pip_accel.config.Config attribute)

 	install_requirements() (pip_accel.PipAccelerator method)

 	
 	installation_refused() (pip_accel.deps.SystemPackageManager method)

 	InvalidSourceDistribution

 	is_direct (pip_accel.req.Requirement attribute)

 	is_editable (pip_accel.req.Requirement attribute)

 	is_installed() (in module pip_accel.utils)

 	is_root() (in module pip_accel.utils)

 	is_short_option() (in module pip_accel.utils)

 	is_transitive (pip_accel.req.Requirement attribute)

 	is_wheel (pip_accel.req.Requirement attribute)

L

 	
 	last_modified (pip_accel.req.Requirement attribute)

 	load_configuration_file() (pip_accel.config.Config method)

 	
 	LocalCacheBackend (class in pip_accel.caches.local)

 	log_format (pip_accel.config.Config attribute)

 	log_verbosity (pip_accel.config.Config attribute)

M

 	
 	makedirs() (in module pip_accel.utils)

 	match_option() (in module pip_accel.utils)

 	
 	match_option_with_value() (in module pip_accel.utils)

 	max_retries (pip_accel.config.Config attribute)

N

 	
 	name (pip_accel.req.Requirement attribute)

 	needs_invalidation() (pip_accel.bdist.BinaryDistributionManager method)

 	
 	NoBuildOutput

 	NothingToDoError

O

 	
 	on_debian (pip_accel.config.Config attribute)

P

 	
 	PatchedAttribute (class in pip_accel)

 	PatchedBotoConfig (class in pip_accel.caches.s3)

 	pep8_git_repo (pip_accel.tests.PipAccelTestCase attribute)

 	persist_checksum() (pip_accel.bdist.BinaryDistributionManager method)

 	pip_accel (module)

 	pip_accel.bdist (module)

 	pip_accel.caches (module)

 	pip_accel.caches.local (module)

 	pip_accel.caches.s3 (module)

 	pip_accel.config (module)

 	pip_accel.deps (module)

 	
 	pip_accel.exceptions (module)

 	pip_accel.req (module)

 	pip_accel.tests (module)

 	pip_accel.utils (module)

 	PipAccelerator (class in pip_accel)

 	PipAcceleratorError

 	PipAccelTestCase (class in pip_accel.tests)

 	put() (pip_accel.caches.AbstractCacheBackend method)

 	(pip_accel.caches.CacheManager method)

 	(pip_accel.caches.local.LocalCacheBackend method)

 	(pip_accel.caches.s3.S3CacheBackend method)

 	python_executable (pip_accel.config.Config attribute)

R

 	
 	recall_checksum() (pip_accel.bdist.BinaryDistributionManager method)

 	related_archives (pip_accel.req.Requirement attribute)

 	replace_file() (in module pip_accel.utils)

 	
 	Requirement (class in pip_accel.req)

 	requirement_is_installed() (in module pip_accel.utils)

 	root (pip_accel.tests.FakeS3Server attribute)

S

 	
 	s3_bucket (pip_accel.caches.s3.S3CacheBackend attribute)

 	s3_cache_bucket (pip_accel.config.Config attribute)

 	s3_cache_create_bucket (pip_accel.config.Config attribute)

 	s3_cache_prefix (pip_accel.config.Config attribute)

 	s3_cache_readonly (pip_accel.config.Config attribute)

 	s3_cache_retries (pip_accel.config.Config attribute)

 	s3_cache_timeout (pip_accel.config.Config attribute)

 	s3_cache_url (pip_accel.config.Config attribute)

 	s3_connection (pip_accel.caches.s3.S3CacheBackend attribute)

 	S3CacheBackend (class in pip_accel.caches.s3)

 	
 	same_directories() (in module pip_accel.utils)

 	sdist_metadata (pip_accel.req.Requirement attribute)

 	setUp() (pip_accel.tests.PipAccelTestCase method)

 	setUpModule() (in module pip_accel.tests)

 	SetupRequiresPatch (class in pip_accel)

 	setuptools_supports_wheels() (pip_accel.PipAccelerator method)

 	skipTest() (pip_accel.tests.PipAccelTestCase method)

 	source_directory (pip_accel.req.Requirement attribute)

 	source_index (pip_accel.config.Config attribute)

 	SystemDependencyError

 	SystemPackageManager (class in pip_accel.deps)

T

 	
 	tearDownModule() (in module pip_accel.tests)

 	test_bdist_fallback() (pip_accel.tests.PipAccelTestCase method)

 	test_checksum_based_cache_invalidation() (pip_accel.tests.PipAccelTestCase method)

 	test_cleanup_of_broken_links() (pip_accel.tests.PipAccelTestCase method)

 	test_cli() (in module pip_accel.tests)

 	test_cli_as_module() (pip_accel.tests.PipAccelTestCase method)

 	test_cli_install() (pip_accel.tests.PipAccelTestCase method)

 	test_cli_usage_message() (pip_accel.tests.PipAccelTestCase method)

 	test_config_file_handling() (pip_accel.tests.PipAccelTestCase method)

 	test_config_object_handling() (pip_accel.tests.PipAccelTestCase method)

 	test_constraint_file_support() (pip_accel.tests.PipAccelTestCase method)

 	test_editable_install() (pip_accel.tests.PipAccelTestCase method)

 	test_empty_download_cache() (pip_accel.tests.PipAccelTestCase method)

 	test_empty_requirements_file() (pip_accel.tests.PipAccelTestCase method)

 	test_environment_validation() (pip_accel.tests.PipAccelTestCase method)

 	test_installed_files_tracking() (pip_accel.tests.PipAccelTestCase method)

 	
 	test_package_downgrade() (pip_accel.tests.PipAccelTestCase method)

 	test_package_upgrade() (pip_accel.tests.PipAccelTestCase method)

 	test_related_archives_logic() (pip_accel.tests.PipAccelTestCase method)

 	test_requirement_objects() (pip_accel.tests.PipAccelTestCase method)

 	test_s3_backend() (pip_accel.tests.PipAccelTestCase method)

 	test_setup_requires_caching() (pip_accel.tests.PipAccelTestCase method)

 	test_setuptools_injection() (pip_accel.tests.PipAccelTestCase method)

 	test_system_package_dependency_failures() (pip_accel.tests.PipAccelTestCase method)

 	test_system_package_dependency_installation() (pip_accel.tests.PipAccelTestCase method)

 	test_time_based_cache_invalidation() (pip_accel.tests.PipAccelTestCase method)

 	test_wheel_install() (pip_accel.tests.PipAccelTestCase method)

 	TransactionalUpdate (class in pip_accel.req)

 	transform_binary_dist() (pip_accel.bdist.BinaryDistributionManager method)

 	transform_pip_requirement_set() (pip_accel.PipAccelerator method)

 	trust_mod_times (pip_accel.config.Config attribute)

 	try_program() (in module pip_accel.tests)

U

 	
 	uninstall() (in module pip_accel.utils)

 	uninstall_through_subprocess() (in module pip_accel.tests)

 	
 	UnknownDistributionFormat

 	unpack_source_dists() (pip_accel.PipAccelerator method)

 	update_installed_files() (pip_accel.bdist.BinaryDistributionManager method)

V

 	
 	validate_environment() (pip_accel.PipAccelerator method)

 	
 	version (pip_accel.req.Requirement attribute)

W

 	
 	wheel_metadata (pip_accel.req.Requirement attribute)

 	
 	wipe_directory() (in module pip_accel.tests)

 _static/down.png

nav.xhtml

 Table of Contents

 		Documentation for the pip accelerator

 		pip-accel: Accelerator for pip, the Python package manager

 		Status

 		Usage

 		Configuration

 		How fast is it?

 		Alternative cache backends

 		Storing the binary cache on Amazon S3

 		Caching of setup requirements

 		Dependencies on system packages

 		Integrating with tox

 		Control flow of pip-accel

 		Contact

 		License

 		Documentation for the pip accelerator API

 		A note about backwards compatibility

 		The Python API of pip-accel

 		pip_accel

 		pip_accel.config

 		pip_accel.req

 		pip_accel.bdist

 		pip_accel.caches

 		pip_accel.caches.local

 		pip_accel.caches.s3

 		pip_accel.deps

 		pip_accel.utils

 		pip_accel.exceptions

 		pip_accel.tests

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_images/graphviz-905a73f81b3fafe6b7a25a395d4aad3369d417ff.png
PipAccelcrator

A J

BinaryDistributionManager

VRN

CacheManager SystemPackageManager

/

N

LacalCacheBackend

$3CachcBackend

_images/inheritance-87fd05935b3c7ea709bc162dc31d548856ecd8d3.png
BuildFailed

InvalidSourceDistribution

BinanyDistrbutionerror |-
P —{ NoBuildoutput

CacheBackendError +| CacheBackendbisabledError

PipAcceleratorError 4—(SystemDependencyError 4—(DependencylnstallationFailed

\ EnvironmentMismatchError ‘Dependency\nsta”atmnﬁefused

UnknownDistributionFormat

_static/up.png

